

Assessment Requirements

Unit AE04K – Knowledge of Diagnosis and Rectification of Engine Electrical Faults

Content:

Advanced battery technology

- a. Batteries must include:
 - i. maintenance free
 - ii. sodium-nickel-chloride
 - iii. fuel cell
 - iv. sodium sulphur and swing lead acid
 - v. fuel cell
- b. Electrochemistry.
- c. Calculation on battery efficiency/rating.

Battery condition and faults

- a. Faults including:
 - i. battery not holding charge
 - ii. unwanted drain
 - iii. diluted electrolyte
 - iv. Impurities in electrolyte
 - v. excessive gassing
 - vi. low state of charge
 - vii. sulphating
 - viii. excessive volt drop during component operation
 - ix. open circuit cell
 - x. overcharging
 - xi. temperature related faults

Operating principles charging systems

- a. Charging systems should include:
 - i. alternators with internal and external regulators
 - ii. water cooled alternators
 - iii. integrated alternators (ISAD)
 - iv. dynalto systems.
- b. Electrical loads imposed by vehicle systems.
- c. Rectification and regulation.

Test procedures for diagnosing faults with charging systems

a. Stages in the fault finding process to include:

- i. hand and eye checks
 - ii. supply voltage
 - iii. generator outputs
 - iv. under and off load testing for rectification and regulation
 - v. bench testing
 - vi. vehicle testing.

Symptoms of faults found on charging systems.

- a. Faults to include:
 - i. charging light inoperative
 - ii. charging light staying on all the time

The Institute of the Motor Industry Final Draft – July 2010

- iii. battery discharges during normal operation
- iv. high resistance in charging circuits
- v. loose broken wiring/connections

b. Internal faults:

- i. diode open circuit
- ii. worn brushes
- iii. regulator faults
- iv. rotor open circuit
- v. stator open circuit

Advanced charging system technology.

- a. Charge balance calculation.
- b. Charging system problems and solutions including:
 - upgrading alternator i.
 - ii. power management systemsiii. two stage

 - iv. dual voltage systems

Advanced starting system technology

- a. Outputs in relation to engine size:
 - i. speed
 - ii. torque
 - iii. power
 - iv. efficiency
- b. System design characteristics:
 - i. DC motor characteristics
 - ii. parallel
 - iii. shunt
 - iv. compound
 - v. series
- c. Electronic starter control.
- d. High voltage systems.
- e. Inhibitor circuits.
- f. Starter types to include:
 - pre engaged i.
 - ii. permanent magnet for heavy and diesel vehicles
 - iii. integrated starters

Faults and diagnostic procedures for starting systems.

- a. Components to include:
 - i. solenoid
 - ii. armature
 - iii. commutator
 - iv. brush assemblies
 - drive systems ٧.
 - vi. ignition switches
 - vii. torque drive systems.
- b. Faults to include:
 - i. battery
 - ii. wiring
 - starter switch iii.
 - inhibitor switch iv.
 - v. pinion
 - vi. flywheel
 - vii. bearings

- viii. internal starter components
- c. Identify stages of fault finding.

Ignition system technology

- a. Components to include:
 - i. ignition switch
 - ii. oil packs
 - iii. spark plugs and leads
 - iv. distributors and amplifier units
 - v. knock sensor
 - vi. engine speed sensor
 - vii. manifold sensor
 - viii. coolant sensor
 - ix. ECU
- b. Materials used in component manufacture.
- c. Systems top include:
 - i. constant energy systems
 - ii. hall effect
 - iii. inductive pulse
 - iv. open and closed loop
 - v. distributorless ignition
 - vi. direct ignition
 - vii. advance angle timing
 - viii. integrated ignition circuit

The construction of ignition components

- a. Spark plugs including:
 - i. heat range
 - ii. electrode gap
 - iii. choosing correct plug
- b. Ignition components to include:
 - i. ignition switch
 - ii. coil packs and leads
 - iii. resistors
 - iv. amplifier units
 - v. electronic systems

Faults and diagnostic procedures for ignition systems

a. Diagnostic equipment and procedures relating to the ignition system and components including:

THE INSTITUTE OF THE MOTOR INDUSTRY

- i. wiring, and connections
- ii. code readers
- iii. oscilloscopes
- iv. ohmmeter
- v. volt meter
- vi. other dedicated equipment
- vii. testing sequences
- b. Faults to include:
 - i. no spark
 - ii. cold and hot starting problems
 - iii. erratic running
 - iv. damp components
 - v. worn components
 - vi. incorrect plug gaps
 - vii. high resistance in circuit
 - viii. intermittent connections

- ix. incorrect timing
- x. coil or distributor cap tracking
- xi. HT breaking down
- xii. running on when switched off
- xiii. pinking and knocking
- xiv. misfire
- xv. erratic idle
- xvi. lack of power
- xvii. backfire and fouling

The operation and requirements of fuel systems

- a. Fuel systems to include:
 - i. single point
 - ii. multi point control layout
 - iii. sequential multi point
 - iv. diesel fuel injection
 - v. petrol injection
 - vi. computer controlled
 - vii. lean burn
 - viii. common rail
 - ix. catalytic converters
- b. Theories and terms to include:
 - i. combustion
 - ii. burn range and rate
 - iii. detonation
 - iv. mixture strength effects
 - v. air-fuel ratios
 - vi. fuelling and emissions
 - vii. CoNox
 - viii. HC
 - ix. exhaust emission regulations

The function of fuel system components and the relationship between components

THE INSTITUTE OF THE MOTOR INDUSTRY

- a. Petrol fuel systems:
 - i. stepper motors
 - ii. sensors
 - iii. injectors
 - iv. fuel pumps
 - v. relays
 - vi. cold start
 - vii. lambda sensors
 - viii. idle control actuators
 - ix. single and multipoint injection systems
 - x. throttle valve potentiometer
 - xi. phase sensor
- b. Compression ignition systems:
 - i. engine stop solenoid
 - ii. injectors
 - iii. fuel pumps
 - iv. relays
 - v. heater plugs
 - vi. injection pumps
 - vii. High pressure pumps
 - viii. filters

c. Block, flow and circuit diagrams.

Faults and diagnostic procedures for fuel system systems

- a. The stages of fault finding.
- b. Diagnostic procedures for including:
 - the use of fault code readers i.
 - ii. oscilloscopes
 - break out boxes iii.
 - iv. on-board diagnostics
 - v. other dedicated equipment
- c. Faults:
 - no fuel i.
 - ii. filters dirty or blocked
 - fuel pump iii.
 - hot and cold start iv.
 - erratic idle v.
 - misfire vi.
 - stalling vii.
 - lack of power viii.
 - backfire ix.
 - х. incorrect co
 - xi. air leaks

The operation of engine management components and relationship with vehicle systems a. Components:

- - i. ECU units ii.
 - input sensors iii. output actuators
- b. Data flow, distribution and interconnection
- b. Control of phases:
 - i. starting
 - ii. enrichment
 - iii. cold running
 - iv. idle
 - full load v.
 - vi. acceleration
 - vii. deceleration
 - viii. engine speed limitation
- d. CANBUS.
- e. Performance mapping implications.
- f. Block, flow and circuit diagrams.

Faults and diagnostic procedures for engine management systems

- a. The stages of fault finding.
- b. Diagnostic procedures including:
 - the use of fault code readers i.
 - ii. oscilloscope
 - iii. break out boxes
 - on-board diagnostics iv.
 - other dedicated equipment v.
- c. Faults:
 - engine fails to start i.
 - hot and cold start ii.
 - iii. erratic idle
 - misfire iv.

- ν. hesitation under acceleration or constant speed
- vi. knock
- vii.
- poor response poor fuel consumption viii.
- incorrect CO ix.
- poor performance Х.
- limp home mode xi.
- fuses xii.

Adjustments to components are:

- a. settings
- b. input and output values
- c. voltages
- d. current consumption
- e. resistance
- f. output patterns with oscilloscope
- g. condition
- h. wear and performance