Assessment Requirements

Unit AE06K – Knowledge of Diagnosis and Rectification of Vehicle Auxiliary Electrical Faults

Content:

The electrical principles that are related to light vehicle electrical circuits:
 a. Ohms law
 b. Voltage
 c. Power
 d. Current (AC and DC)
 e. Resistance
 f. Magnetism
 g. Electromagnetism and electromagnetic induction
 h. Digital and fibre optic principles
 i. Electrical units and symbols
 j. Electrical and electronic terminology
 k. Relevant electrical safety

Battery and Charging
 a. The construction and operation of vehicle batteries including:
 i. low maintenance and maintenance free
 ii. lead acid and nickel cadmium types
 iii. cells
 iv. separators
 v. plates
 vi. electrolyte
 b. The operation of the vehicle charging system:
 i. alternator
 ii. rotor
 iii. stator
 iv. slip ring
 v. brush assembly
 vi. three phase output
 vii. diode rectification pack
 viii. voltage regulation
 ix. phased winding connections
 x. cooling fan
 xi. alternator drive system

Starting
 a. The layout, construction and operation of engine starting systems: inertia and pre-engaged principles.
 b. The function and operation of the following components:
 i. inertia and pre-engaged starter motor
 ii. starter ring gear
 iii. pinion
 iv. starter solenoid
 v. ignition/starter switch
 vi. starter relay (if appropriate)
 vii. one-way clutch (pre-engaged starter motor)
Lighting systems and technology
a. Lighting systems should include:
i. Xenon lighting
ii. gas discharge lighting
iii. ballast system
iv. LED
v. intelligent front lighting
vi. blue lights
vii. complex reflectors
viii. fibre optic
ix. optical patterning

Lighting circuits and the relationship between each circuit
a. Circuits must include:
i. Sidelights including number plate lights and marker lights
ii. dipped beam
iii. main beam
iv. dim/dip
v. indicators and hazard lights
vi. high intensity and fog light

Common faults and testing methods associated with external lighting system
a. Fault diagnosis for:
i. lighting systems failing to operate correctly
ii. switches
iii. relays
iv. bulbs failing to operate

The operating principles of external lighting systems and multiplexing systems
a. To include all external lighting systems and a good knowledge of multiplexing systems.

The different types of electric windows, and mirror systems and components
a. Components should include:
i. window
ii. mirror motors
iii. multi-functional switches
iv. relays
v. total closure modules

The function of component parts in the electric window and mirror systems
a. Components must include:
i. motors
ii. relays
iii. interfaces
iv. modules
v. switches

The operating principles of electric windows and mirror systems
a. Operating principles of the following:
i. motors
ii. interfaces
iii. switches
iv. modules
v.
Common faults and testing methods associated with electric windows mirror systems
a. Fault diagnosis for:
 i. electric windows failing to open or close
 ii. electric mirrors fail to adjust
 iii. slow operation on both systems

The different types of screen heating systems and components
a. Systems must include:
 i. heated front screens
 ii. heated rear screens
 iii. heated mirrors

The function and operating principles of components for heated screen and mirror systems
a. Components must include:
 i. front screen elements
 ii. mirror elements
 iii. time control relays
 iv. multifunction relays and switches

Common faults and testing methods associated with heated screen and mirror systems
a. Faults must include:
 i. screen elements not operating
 ii. timer relays not operating and staying on permanently

The different types of In Car Entertainment (ICE) systems and components
a. Systems and components must include:
 i. radio CD and multi play units
 ii. DVD players
 iii. MP3 players
 iv. speakers
 v. aerial systems
 vi. amplifiers
 vii. V.D.U. screens
 viii. Satellite Navigation
 ix. communication units

The function of components in ICE systems
a. Systems include:
 i. radios
 ii. CD players
 iii. video players
 iv. DVD players
 v. aerial systems
 vi. speakers
 vii. amplifiers
 viii. VDU screens
 ix. mobile communication units

The operating principles of ICE systems
a. Operation of entertainment systems speaker and aerial systems

Common faults and testing methods associated with ICE systems
a. Faults to include:
 i. entertainment and navigation units not operating
 ii. speaker, aerial and amplifier systems not functioning correctly
iii. excessive radio interference (suppression)
iv. use of diagnostic computers and systems

The different types of integrated security/warning systems and components
a. Components to include:
 i. control units
 ii. alarm modules
 iii. audible warning units
 iv. immobiliser units
 v. sensing units
 vi. horn
 vii. audible warning speakers

The function of component parts in integrated security and warning systems
a. Components to include
 i. control units
 ii. alarm modules
 iii. audible warning units
 iv. interior sensing systems
 v. immobiliser units
 vi. relays
 vii. LED’s
 viii. horns

The operating principles of integrated security and warning systems
a. Operation of alarm systems and audible warning units.

The relevant legislation relevant to security and warning systems
a. Find and apply all relevant legislation for the fitment and use of security and warning systems.

Common faults and testing methods associated with security and warning systems
a. Components to include:
 i. control units
 ii. audible warning units
 iii. immobiliser units
 iv. horns
 v. relays
 vi. LED’s
 vii. wiring
 viii. connections and protection devices
 ix. removal and refitting procedures
 x. using computer diagnostics to identify faults
 xi. use of manufacturers diagnostic equipment

The different wiper system components
a. Components must include:
 i. wiper motors
 ii. washer motors
 iii. wiper linkage
 iv. multifunction relays
 v. headlamp wash/wipe
The function of component wiper and washer components
a. Components and systems must include:
 i. wiper motors
 ii. intermittent wash wipe relays
 iii. parking systems

The operating principles, faults and testing methods of wiper and washer systems
a. Principles, fault diagnosis and testing for:
 i. wiper motors failing
 ii. damaged linkages
 iii. incorrect operation of intermittent and parking systems
 iv. earth faults
 v. control unit failure

The different heater, cooling system components and air con.
a. Components include:
 i. heater motors
 ii. speed rheostats,
 iii. switches
 iv. valves
 v. radiator cooling fan motors
 vi. relays
 vii. air conditioning units

The function of component heater, cooling parts and air conditioning
a. Components include:
 i. heater motors
 ii. rheostats
 iii. valves
 iv. switches
 v. relays
 vi. cooling fan motors
 vii. air conditioning units
 viii. thermostatic switches

The operating principles of heater, cooling systems and air conditioning
a. Principles to include:
 i. conduction
 ii. convection
 iii. radiation
 iv. circulation
 v. boiling points
 vi. states of matter (Gas, liquid, solid)
 vii. temperature control
 viii. antifreeze mixtures
 ix. heat transfer

Common faults and testing methods associated with heater, cooling systems and air conditioning
a. Fault diagnosis for:
 i. heater motor failing to operate on all/one speed
 ii. radiator cooling fan not operating
 iii. valves
 iv. relays
 v. switches not operating
vi. electrical related faults on the air conditioning system

The different types of locking system components
a. Door locking actuators, solenoids, deadlocking actuators, anti-theft modules.

The function of component parts in the locking system
a. Solenoids, actuators (electrical and pneumatic), multifunctional relays, anti-theft modules and release systems.

The operating principles of locking systems
a. Doors and cabs

Common faults and testing methods associated with locking systems
a. Door locking actuators, solenoids, connections, wiring, relays, and protection devices/fuses

The different types of Supplementary Restraint and Airbag systems
a. Components include:
 i. control units
 ii. sensors
 iii. seat belt pretensioners
 iv. airbag assemblies
 v. wiring systems
 vi. warning systems

The function of component parts in the Supplementary Restraint and Airbag systems
a. Components include:
 i. control units
 ii. interfaces
 iii. sensors
 iv. airbag units
 v. pretensioners

The operating principles of Supplementary Restraint and Airbag systems
a. Operation of the sensors.
b. Operation of the airbag unit.
c. Operation of the various types of pretension.
d. Safe handling procedures and regulations.

Common faults and testing methods associated Supplementary Restraint and Airbag systems
a. Fault diagnosis for Airbag and SRS faults:
 i. fault code identification
 ii. wiring faults
 iii. component failure
 iv. earth problems
 v. sensor faults.

How to examine, measure and make suitable adjustments to components are:

The Institute of the Motor Industry
Final Draft – July 2010
h. Wear and performance

How to select, prepare and use diagnostic and rectification equipment for automotive auxiliary electrical systems:
 a. Voltmeters
 b. Ammeters
 c. Ohmmeters
 d. Multi-meters
 e. Battery testing equipment
 f. Dedicated and computer based diagnostic equipment
 g. Oscilloscopes