

Assessment Requirements

Unit AE06K – Knowledge of Diagnosis and Rectification of Vehicle Auxiliary Electrical Faults

Content:

The electrical principles that are related to light vehicle electrical circuits:

- a. Ohms law
- b. Voltage
- c. Power
- d. Current (AC and DC)
- e. Resistance
- f. Magnetism
- g. Electromagnetism and electromagnetic induction
- h. Digital and fibre optic principles
- i. Electrical units and symbols
- j. Electrical and electronic terminology
- k. Relevant electrical safety

Battery and Charging

- a. The construction and operation of vehicle batteries including:
 - i. low maintenance and maintenance free
 - ii. lead acid and nickel cadmium types
 - iii. cells
 - iv. separators
 - v. plates
 - vi. electrolyte
- b. The operation of the vehicle charging system:
 - i. alternator
 - ii. rotor
 - iii. stator
 - iv. slip ring
 - v. brush assembly
 - vi. three phase output
 - vii. diode rectification pack
 - viii. voltage regulation
 - ix. phased winding connections
 - x. cooling fan
 - xi. alternator drive system

Starting

- a. The layout, construction and operation of engine starting systems: inertia and pre-engaged principles.
- b. The function and operation of the following components:
 - i. inertia and pre-engaged starter motor
 - ii. starter ring gear
 - iii. pinion
 - iv. starter solenoid
 - v. ignition/starter switch
 - vi. starter relay (if appropriate)
 - vii. one-way clutch (pre-engaged starter motor)

Lighting systems and technology

- a. Lighting systems should include:
 - i. Xenon lighting
 - ii. gas discharge lighting
 - iii. ballast system
 - iv. LED
 - v. intelligent front lighting
 - vi. blue lights
 - vii. complex reflectors
 - viii. fibre optic
 - ix. optical patterning

Lighting circuits and the relationship between each circuit

- a. Circuits must include:
 - i. Sidelights including number plate lights and marker lights
 - ii. dipped beam
 - iii. main beam
 - iv. dim/dip
 - v. indicators and hazard lights
 - vi. high intensity and fog light

Common faults and testing methods associated with external lighting system

- a. Fault diagnosis for:
 - i. lighting systems failing to operate correctly
 - ii. switches
 - iii. relays
 - iv. bulbs failing to operate

The operating principles of external lighting systems and multiplexing systems

a. To include all external lighting systems and a good knowledge of multiplexing systems.

The different types of electric windows, and mirror systems and components

- a. Components should include:
 - i. window
 - ii. mirror motors
 - iii. multi-functional switches
 - iv. relavs
 - v. total closure modules

The function of component parts in the electric window and mirror systems

- a. Components must include:
 - i. motors
 - ii. relays
 - iii. interfaces
 - iv. modules
 - v. switches

The operating principles of electric windows and mirror systems

- a. Operating principles of the following:
 - i. motors
 - ii. interfaces
 - iii. switches
 - iv. modules
 - ٧.

Common faults and testing methods associated with electric windows mirror systems

- a. Fault diagnosis for:
 - i. electric windows failing to open or close
 - ii. electric mirrors fail to adjust
 - iii. slow operation on both systems

The different types of screen heating systems and components

- a. Systems must include:
 - i. heated front screens
 - ii. heated rear screens
 - iii. heated mirrors

The function and operating principles of components for heated screen and mirror systems

- a. Components must include:
 - i. front screen elements
 - ii. mirror elements
 - iii. time control relays
 - iv. multifunction relays and switches

Common faults and testing methods associated with heated screen and mirror systems

- a. Faults must include:
 - i. screen elements not operating
 - ii. timer relays not operating and staying on permanently

The different types of In Car Entertainment (ICE) systems and components

- a. Systems and components must include:
 - i. radio CD and multi play units
 - ii. DVD players
 - iii. MP3 players
 - iv. speakers
 - v. aerial systems
 - vi. amplifiers
 - vii. V.D.U. screens
 - viii. Satellite Navigation
 - ix. communication units

The function of components in ICE systems

- a. Systems include:
 - i. radios
 - ii. CD players
 - iii. video players
 - iv. DVD players
 - v. aerial systems
 - vi. speakers
 - vii. amplifiers
 - viii. VDU screens
 - ix. mobile communication units

The operating principles of ICE systems

a. Operation of entertainment systems speaker and aerial systems

Common faults and testing methods associated with ICE systems

- a. Faults to include:
 - i. entertainment and navigation units not operating
 - ii. speaker, aerial and amplifier systems not functioning correctly

- iii. excessive radio interference (suppression)
- iv. use of diagnostic computers and systems

The different types of integrated security/warning systems and components

- a. Components to include:
 - i. control units
 - ii. alarm modules
 - iii. audible warning units
 - iv. immobiliser units
 - v. sensing units
 - vi. horn
 - vii. audible warning speakers

The function of component parts in integrated security and warning systems

- a. Components to include
 - i. control units
 - ii. alarm modules
 - iii. audible warning units
 - iv. interior sensing systems
 - v. immobiliser units
 - vi. relays
 - vii. LED's
 - viii. horns

The operating principles of integrated security and warning systems

a. Operation of alarm systems and audible warning units.

The relevant legislation relevant to security and warning systems

a. Find and apply all relevant legislation for the fitment and use of security and warning systems.

Common faults and testing methods associated with security and warning systems

- a. Components to include:
 - i. control units
 - ii. audible warning units
 - iii. immobiliser units
 - iv. horns
 - v. relays
 - vi. LED's
 - vii. wiring
 - viii. connections and protection devices
 - ix. removal and refitting procedures
 - x. using computer diagnostics to identify faults
 - xi. use of manufacturers diagnostic equipment

The different wiper system components

- a. Components must include:
 - i. wiper motors
 - ii. washer motors
 - iii. wiper linkage
 - iv. multifunction relavs
 - v. headlamp wash/wipe

The function of component wiper and washer components

- a. Components and systems must include:
 - i. wiper motors
 - ii. intermittent wash wipe relays
 - iii. parking systems

The operating principles, faults and testing methods of wiper and washer systems

- a. Principles, fault diagnosis and testing for:
 - i. wiper motors failing
 - ii. damaged linkages
 - iii. incorrect operation of intermittent and parking systems
 - iv. earth faults
 - v. control unit failure

The different heater, cooling system components and air con.

- a. Components include:
 - i. heater motors
 - ii. speed rheostats,
 - iii. switches
 - iv. valves
 - v. radiator cooling fan motors
 - vi. relays
 - vii. air conditioning units

The function of component heater, cooling parts and air conditioning

- a. Components include:
 - i. heater motors
 - ii. rheostats
 - iii. valves
 - iv. switches
 - v. relays
 - vi. cooling fan motors
 - vii. air conditioning units
 - viii. thermostatic switches

The operating principles of heater, cooling systems and air conditioning

- a. Principles to include:
 - i. conduction
 - ii. convection
 - iii. radiation
 - iv. circulation
 - v. boiling points
 - vi. states of matter (Gas, liquid, solid)
 - vii. temperature control
 - viii. antifreeze mixtures
 - ix. heat transfer

Common faults and testing methods associated with heater, cooling systems and air conditioning

- a. Fault diagnosis for:
 - i. heater motor failing to operate on all/one speed
 - ii. radiator cooling fan not operating
 - iii. valves
 - iv. relays
 - v. switches not operating

vi. electrical related faults on the air conditioning system

The different types of locking system components

a. Door locking actuators, solenoids, deadlocking actuators, anti-theft modules.

The function of component parts in the locking system

a. Solenoids, actuators (electrical and pneumatic), multifunctional relays, anti-theft modules and release systems.

The operating principles of locking systems

a. Doors and cabs

Common faults and testing methods associated with locking systems

a. Door locking actuators, solenoids, connections, wiring, relays, and protection devices/fuses

The different types of Supplementary Restraint and Airbag systems

- a. Components include:
 - i. control units
 - ii. sensors
 - iii. seat belt pretensioners
 - iv. airbag assemblies
 - v. wiring systems
 - vi. warning systems

The function of component parts in the Supplementary Restraint and Airbag systems

- a. Components include:
 - i. control units
 - ii. interfaces
 - iii. sensors
 - iv. airbag units
 - v. pretensioners

The operating principles of Supplementary Restraint and Airbag systems

- a. Operation of the sensors.
- b. Operation of the airbag unit.
- c. Operation of the various types of pretension.
- d. Safe handling procedures and regulations.

Common faults and testing methods associated Supplementary Restraint and Airbag systems

- a. Fault diagnosis for Airbag and SRS faults:
 - i. fault code identification
 - ii. wiring faults
 - iii. component failure
 - iv. earth problems
 - v. sensor faults.

How to examine, measure and make suitable adjustments to components are:

- a. Settings
- b. Input and output values
- c. Voltages
- d. Current consumption
- e. Resistance
- f. Input and output patterns with oscilloscope (including frequency and duty cycle measurements)
- g. Condition

h. Wear and performance

How to select, prepare and use diagnostic and rectification equipment for automotive auxiliary electrical systems:

- a. Voltmeters
- b. Ammeters
- c. Ohmmeters
- d. Multi-meters
- e. Battery testing equipment
- f. Dedicated and computer based diagnostic equipment
- g. Oscilloscopes