

Assessment Requirements

Unit HV04K – Knowledge of Heavy Vehicle Chassis Units and Components

Content:

Chassis layouts

- i. types of chassis
- ii. axle configurations
- iii. rear steered axles
- iv. self-steered axles
- 1.3 describe how to remove and replace

Steering

- a. Key engineering principles related to steering:
 - i. geometry
 - ii. angles
 - iii. damping
 - iv. stress and strain
- b. The construction and operation of steering systems
 - i. power and non-assisted steering
 - ii. multi axle steering arrangements
 - iii. heavy vehicle steering units and components
- c. The action and purpose of steering geometry:
 - v. castor angle
 - vi. camber angle
 - vii. kingpin or swivel pin inclination
 - viii. negative offset
 - ix. wheel alignment (tracking) (toe in and toe out)
 - x. toe out on turns
 - xi. steered wheel geometry
 - xii. multi axle steered wheel geometry
- d. The following terms associated with steering:
 - i. Ackerman principle
 - ii. slip angles
 - iii. self-aligning torque oversteer and understeer
 - iv. neutral steer
 - v. rear steer
 - vi. self-steer
- e. The components and layout of hydraulic power assisted steering systems:
 - i. piston and power cylinders
 - ii. drive belts and pumps
 - iii. control valve (rotary, spool and flapper type)
 - iv. hydraulic fluid
- f. The advantages of power assisted steering.
- g. The operation of hydraulic power assisted steering.
- h. The principles of electronic power steering systems.
- i. The procedures used for inspecting the serviceability and condition of:
 - i. manual steering
 - ii. power assisted steering

- h. Steering system defects to include:
 - i. uneven tyre wear
 - ii. wear on outer edge of tyre
 - iii. wear on inner edge of tyre
 - iv. uneven wear
 - v. flats on tread
 - vi. steering vibrations
 - vii. wear in linkage
 - viii. damaged linkage
 - ix. incorrect wheel alignment
 - x. incorrect steering geometry

Suspension

a. Types of suspension

- i. non independent suspension
- ii. independent suspension
- iii. air suspension
- iv. electronically controlled air suspension (ECAS)

THE INSTITUTE OF THE MOTOR INDUSTRY

- v. steel suspension
- vi. lifting axles
- b. The layout and components of suspension systems:
 - i. non-independent suspensions
 - ii. independent front suspension (IFS)
 - iii. air suspension
 - iv. electronically controlled air suspension (ECAS)
 - v. rubber suspension
 - vi. tandem axle suspension
 - vii. lifting axles
- b. The operation of suspension systems and components:
 - i. leaf and coil springs
 - ii. torsion bar
 - iii. air springs
 - iv. air suspension levelling mechanism (mechanical and electronic)
 - v. dampers
 - vi. trailing arms
 - vii. ball joints
 - viii. bump stops
 - ix. anti-roll bars
 - x. stabiliser bars
 - xi. swinging arms
 - xii. parallel link
 - xiii. transverse link
 - xiv. "A" frame axle location
 - xv. suspension damping
 - xvi. stress and strain
- c. The advantages of different systems including:
 - i. non-independent
 - ii. independent suspension (IFS)
 - iii. air suspension (mechanical)
 - iv. air suspension (electronically controlled)
 - v. lifting axles
- d. The principles of electronically controlled air suspensions systems.
- e. The forces acting on suspension systems during braking, driving and cornering.
- f. The methods of locating the road wheels against braking, driving and cornering forces.

- g. The methods of controlling cornering forces by fitting anti-roll torsion members
- h. Suspension terms:
 - i. rebound
 - ii. bump
 - iii. yaw
 - iv. dive
 - v. pitch
 - vi. roll
 - vii. compliance
- i. The procedures used for inspecting the serviceability and condition of the suspension system
- j. Suspension system defects:
 - i. wheel hop
 - ii. ride height (unequal and low)
 - iii. wear
 - iv. noises under operation
 - v. fluid leakage
 - vi. excessive travel
 - vii. excessive tyre wear
 - viii. bounce
 - ix. poor vehicle handling
 - x. worn dampers
 - xi. worn joints/damaged linkages
 - xii. vehicle "crabbing"

Brakes

- a. Key principles relating to braking systems:
 - i. laws of friction
 - ii. hydraulics
 - iii. pneumatics
 - iv. properties of fluids
 - v. properties of air
 - vi. braking efficiency
- b. The construction and operation of braking systems:
 - i. air brakes
 - ii. air-over-hydraulic brakes
 - iii. electronic brakes including Anti-lock Braking Systems and Anti-Slip Regulation
 - iv. endurance (retarding) systems
- c. The construction and operation of drum brakes:
 - i. leading and trailing shoe construction
 - ii. self-servo action
 - iii. slack adjusters
 - iv. cam expanders
 - v. wedge expanders
 - vi. automatic adjusters
 - vii. backing plates
 - viii. parking brake system
 - ix. wear indicators and warning lamps
- d. The construction and operation of disc brakes:
 - i. disc pads
 - ii. caliper
 - iii. brake disc
 - iv. ventilated disc
 - v. disc pad retraction
 - vi. parking brake system
 - vii. wear indicators and warning lamps

- e. The construction and operation of the hydraulic braking system:
 - i. line layout
 - ii. master cylinders
 - iii. wheel cylinders
 - iv. disc brake callipers & pistons
 - v. brake pipe
 - vi. brake servo
 - vii. warning lights
 - viii. parking brakes
 - ix. equalising valves
- f. The construction and operation of the air braking system
 - i. air compressors
 - ii. air dryers
 - iii. air processing units
 - iv. pressure regulating valves
 - v. circuit protection valves
 - vi. air reservoirs
 - vii. control valves (foot, park and hand)
 - viii. relay valves
 - ix. load sensing valves (mechanical and automatic)
 - x. brake actuators
 - xi. parking brake mechanisms
 - xii. trailer control valves
 - xiii. two-line trailer brake system
 - xiv. warning light/buzzer systems
 - xv. air pipes
 - xvi. valve port numbering
- g. The construction and operation of the air-over-hydraulic braking system
 - i. air supply and storage
 - ii. air control valves
 - iii. conversion from pneumatic pressure to hydraulic pressure
 - iv. hydraulic control valves
- h. The requirements and hazards of brake fluid:
 - i. boiling point
 - ii. hygroscopic action
 - iii. manufacturer's change periods
 - iv. fluid classification and rating
 - v. potential to damage paint surfaces
 - Terms associated with braking systems:
 - i. braking efficiency
 - ii. brake fade

i.

- iii. brake balance
- j. The procedures used for inspecting the serviceability and condition of the braking system
- h. Braking system defects:
 - i. worn shoes or pads
 - ii. worn or scored brake surfaces
 - iii. abnormal brake noises
 - iv. brake judder
 - v. fluid contamination of brake surfaces
 - vi. fluid/air leaks
 - vii. pulling to one side
 - viii. poor braking efficiency
 - ix. lack of assistance
 - x. loss of air pressure
 - xi. brake drag

- xii. brake grab
- xii brake fade

Endurance Brakes

a. The construction and operation of heavy vehicle endurance (retarder) brakes:

- i. exhaust brake
- ii. compression (engine) brake
- iii. hydraulic retarder
- iv. electro-magnetic retarder

ABS and ASR

a. The construction and operation of heavy vehicle ABS systems

- i. category one (2S/2M)
- ii. category two (2S/1M)
- iii. category three (1S/1M)
- iv. wheel speed sensors
- v. modulators
- vi. electronic control unit
- Terms associated with ABS systems
 - i. individual control
 - ii. modified individual control
 - iii. select low

The construction and operation of heavy vehicle ASR systems

The procedures used for inspecting the serviceability and condition of the ABS/ASR system

Wheel and Tyres

a. The engineering principles for wheels and tyres

- i. Friction
- ii. un-sprung weight
- iii. dynamic and static balance
- b. The construction of different types of tyre:
 - i. radial
 - ii. cross ply
 - iii. bias belted
 - iv. tread patterns
 - v. tyre mixing regulations
 - vi. tyre applications
 - vii. tyre markings
 - viii. wheel construction

ix.

c. Tyre markings:

- i. tyre and wheel size markings
- ii. speed rating
- iii. direction of rotation
- iv. profile
- v. load rating
- vi. ply rating
- vii. tread-wear indicators
- d. Wheel construction:
 - i. alloy
 - ii. pressed steel
 - iii. one-piece rims

- iv. two-piece rims
- v. three-piece rims
- e. Wheel retention
 - i. conical seating
 - ii. spherical seating
 - iii. spigot mounted
- f. Types of wheel bearing arrangements:
 - i. non-driving and driven wheels

 - ii. fully floating iii. three quarter floating
- g. Types of bearing used for wheel bearing arrangements and their adjustment:
 - taper roller i.
 - ii. angular contact ball
 - iii. integrated
- h. The procedures used for inspecting the serviceability and condition of:
 - iii. tyres & wheels
 - iv. bearings
- i. The defects associated with tyres and wheels:
 - i. abnormal tyre wear
 - ii. cuts
 - iii. side wall damage
 - iv. wheel vibrations
 - v. loose wheel retainers
 - vi. tyre over heating
 - vii. tread separation
- j. Hazards when loading heavy vehicles
 - i. flammable liquids
 - Gases that are lighter than air and heavier than air ii.
 - iii. increased vehicle mass
 - raised tipper bodies iv.
 - raised centre of gravity v.
 - vi. working at heights

General

The procedures for dismantling, removal and replacement of chassis system components

- a. The preparation:
 - testing and use of tools and equipment i.
 - electrical meters and equipment used for dismantling ii.
 - iii. removing and replacing chassis systems and components
- b. Appropriate safety precautions:
 - PPE i.
 - ii. vehicle protection when dismantling
 - removing and replacing chassis systems and components iii.
- c. The importance of logical and systematic processes.
- d. The inspection and testing of chassis systems and components.
- e. The preparation of replacement units for re-fitting or replacement of chassis systems or components.
- Identify the reasons why replacement components and units must meet the original specifications f. (OES):
 - i. warranty requirements
 - ii. to maintain performance
 - iii. safety requirements
- g. Refitting procedures.

- h. The inspection and testing of units and systems to ensure compliance with manufacturer's, legal and performance requirements.
- The inspection and re-instatement of the vehicle following repair to ensure customer satisfaction: i. cleanliness of vehicle interior and exterior i.

 - ii. security of components and fittings
 - iii. re-instatement of components and fittings