Assessment Requirements

Unit LV07K – Knowledge of Diagnosis and Rectification of Light Vehicle Engine Faults

Content:

Single and Multi-Point Petrol Injection Systems
a. The operation and construction of single and multi-point injection systems including:
 i. types of air flow sensor
 ii. fuel supply system
 iii. fuel pump
 iv. filter
 v. fuel regulator
 vi. injectors
 vii. sequential injection
 viii. continuous injection
 ix. semi-continuous injection
 x. electronic control unit (ECU)
 xi. injector pulse width
 xii. sensors
b. The operation of each system under various operating conditions including:
 i. cold starting
 ii. warm up
 iii. hot starting
 iv. acceleration
 v. deceleration
 vi. cruising
 vii. full load
c. Engine speed limiting and knock sensing.

Engine Management
a. The function and purpose of engine management systems.
b. The difference between analogue, digital, programmable and non-programmable systems.
c. Open loop and closed loop control, types of input and output devices.
d. The function and operation of digital components and systems.
e. The operation of engine management systems under various conditions.

Valve Mechanisms
a. The reasons for variable valve timing and multi-valve arrangements and the effect on performance.
b. Layout of multi-valve arrangements, components, operation and drive arrangements.
c. Construction features and operation of variable valve timing engines and electronic control.

Pressure Charged Induction Systems
a. The meaning of volumetric efficiency; explain the effect of volumetric efficiency on engine performance, torque and power.
b. The methods used to improve volumetric efficiency:
 i. variable valve timing
 ii. turbo-charging
 iii. supercharging
 iv. intercoolers
c. The operation of turbo-chargers and the purpose of:
 i. turbo-charging
ii. supercharging
iii. intercoolers
iv. waste gates
v. exhaust gas recirculation
d. Advantages and disadvantages of pressure charging induction systems.

Terms Associated with Combustion

a. Flame travel, pre-ignition and detonation.
b. Fuel properties:
 i. octane rating
 ii. flash point
 iii. fire point
 iv. volatility
 v. composition of petrol and diesel fuels
 vi. hydro-carbon content
c. Composition of carbon fuels (petrol and diesel):
 i. % hydrogen and carbon
 ii. composition of air
 iii. % oxygen
 iv. % nitrogen
d. Combustion process for spark ignition and compression ignition engines:
 i. air fuel ratio
 ii. lambda ratio
 iii. stoichiometric ratio
e. The by-products of combustion for different engine conditions and fuel mixtures:
 i. CO
 ii. CO₂
 iii. O
 iv. N
 v. H₂O
 vi. NOx
f. Describe the legal requirements for exhaust emissions;
 i. MOT requirements
 ii. EURO 3
 iii. 4 & 5 regulations

Assessment, Repair and Restoration of Mechanical Engine Components

a. How engine mechanical components are assessed and measured for wear and serviceability:
 i. cylinder bores
 ii. cylinder heads
 iii. crankshaft journals
 iv. valve faces
 v. valve guides
 vi. valve seats
 vii. camshafts
b. The methods used for the repair and restoration of engine components.

Cooling, Heating and Ventilation

a. The components, operating principles, and functions of engine cooling systems
b. Procedures used to remove, replace and adjust cooling system components
 i. cooling fans and control devices
 ii. header tanks, radiators and pressure caps
 iii. heater matrix’s and temperature control systems
 iv. expansion tanks hoses, clips and pipes
 v. thermostats impellers and coolant
vi. ventilation systems

c. The preparation and method of use of appropriate specialist equipment used to evaluate system
 performance following component replacement
 i. system pressure testers
 ii. pressure cap testers
 iii. hydrometer, or anti-freeze testing equipment
 iv. chemical tests for the detection of combustion gas

d. The layout and construction of internal heater systems.
e. The controls and connections within internal heater system.
f. Symptoms and faults associated with cooling systems:
 i. water leaks
 ii. water in oil
 iii. internal heating system: efficiency, operation, leaks, controls, air filtration, air leaks and
 contamination
 iv. excessively low or high coolant temperature

g. The procedures used when inspecting
 i. internal heating system
 ii. cooling system

Air Conditioning Systems
a. The operation of air conditioning components including:
 i. compressors
 ii. condensers
 iii. receivers
 iv. dryers
 v. connections
 vi. valves
 vii. hoses
 viii. thermostats
 ix. refrigerants

b. The layout and operation of air conditioning systems.

Climate Control Systems
a. Identify components used in climate control systems including:
 i. sensors
 ii. speed controls
 iii. control systems
 iv. servomotors
 v. electronic components

b. The layout of climate control systems.
c. The operation of climate control system.

Symptoms and Faults in Engine Mechanical Systems and Components
a. Symptoms and faults related to:
 i. worn cylinders
 ii. cylinder liners
 iii. pistons
 iv. piston rings
 v. crankshaft
 vi. camshaft
 vii. bearings
 viii. cylinder head and gasket
 ix. valves
 x. valve seats and valve guides
xi. cambelts
xii. lubrication system and components
xiii. oil pump
xiv. relief valve
xv. filter
xvi. turbo-charger
xvii. supercharger

Diagnosis of Faults in Engine Mechanical Systems and Components
a. Interpret information for:
 i. diagnostic tests
 ii. manufacturer’s vehicle and equipment specifications
 iii. use of equipment
 iv. testing procedures
 v. test plans
 vi. legal requirements
b. The preparation of tools and equipment for use in diagnostic testing and assessment.
c. Systematic assessment, testing and inspection of engine components and systems including:
 i. mechanical system & component condition
 ii. engine balance
 iii. power balance
 iv. performance and operation
 v. wear
 vi. run out
 vii. alignment
d. Use of appropriate tools and equipment including:
 i. compression gauges
 ii. leakage testers
 iii. cylinder balance tester
 iv. pressure gauges
 v. micrometers
 vi. vernier gauges
e. Evaluate and interpret test results from diagnostic testing.
f. Compare test result and values with vehicle manufacturer’s specifications and settings.
g. The procedures for dismantling, components and systems and the use of appropriate equipment and procedures.
h. Assess, examine and measure components including:
 i. settings
 ii. values
 iii. condition
 iv. wear and performance of components and systems
i. Probable faults
 i. malfunctions
 ii. incorrect settings
 iii. wear
j. Rectification or replacement procedures.
 Evaluate operation of components and systems following diagnosis and repair to confirm system performance.

Faults and Symptoms in Ignition Systems
a. Ignition system failure or malfunctions including:
 i. no spark
 ii. misfiring
 iii. backfiring
 iv. cold or hot starting problems
v. poor performance
vi. pre-ignition
vii. detonation
viii. exhaust emission levels
ix. fuel consumption
x. low power
xi. unstable idle speed

Faults and Symptoms in Electronic Petrol and Diesel Injection Systems
a. Petrol and diesel injection system failures or malfunctions including:
 i. cold or hot starting problems
 ii. poor performance
 iii. exhaust emissions
 iv. high fuel consumption
 v. erratic running
 vi. low power
 vii. unstable idle speed

Faults and Symptoms in Engine Management Systems
a. Engine management system failure or malfunctions including:
 i. misfiring
 ii. backfiring
 iii. cold or hot starting problems
 iv. poor performance
 v. pre-ignition
 vi. detonation
 vii. exhaust emission levels
 viii. fuel consumption
 ix. low power
 x. unstable idle speed

Diagnosis of Faults in Electronic Ignition, Petrol and Diesel Injection and Engine Management Systems
a. Locate and interpret information for:
 i. diagnostic tests
 ii. manufacturer’s vehicle and equipment specifications
 iii. use of equipment
 iv. testing procedures
 v. test plans
 vi. fault codes
 vii. legal requirements
b. The preparation of tools and equipment for use in diagnostic testing and assessment.
c. Conduct systematic assessment, testing of engine systems including:
 i. component condition and performance
 ii. component settings
 iii. component values
 iv. electrical and electronic values
 v. system performance and operation
 vi. use of appropriate tools and equipment including gauges
 vii. multi-meter
 viii. breakout box
 ix. oscilloscope
 x. diagnostic tester
 xi. manufacturer’s dedicated equipment
 xii. exhaust gas analyser
xiii. fuel flow meter
xiv. pressure gauges
d. Evaluate and interpret test results from diagnostic testing.
e. Compare test result, values and fault codes with vehicle manufacturer’s specifications and settings.
f. The procedures for dismantling, components and systems using appropriate equipment.
g. Assess, examine and measure components including:
 i. settings
 ii. input and output values
 iii. voltages
 iv. current consumption
 v. resistance
 vi. output patterns with oscilloscope
 vii. condition
 viii. wear and performance of components and systems
h. Identify probable faults and indications of:
 i. faults
 ii. malfunctions
 iii. incorrect settings
 iv. wear
 v. values
 vi. inputs and outputs
 vii. fault codes
i. Rectification or replacement procedures.
j. Evaluation and the operation of components and systems following diagnosis and repair to confirm system performance.

Faults and Symptoms in Vehicle Comfort Systems
a. System failure, malfunction or ineffectiveness of internal heating system, air conditioning system or climatic control system including:
 i. leaks
 ii. abnormal noise
 iii. ineffective operation
 iv. failure to operate
 v. control faults
 vi. inadequate operation

Diagnosis of Faults in Vehicle Comfort Systems
a. Locate and interpret information for:
 i. diagnostic tests
 ii. manufacturer’s vehicle and equipment specifications
 iii. use of equipment
 iv. testing procedures
 v. test plans
 vi. fault codes
 vii. legal requirements
b. The preparation of tools and equipment for use in diagnostic testing and assessment.
c. Conduct systematic assessment and testing of comfort systems including:
 i. component condition and performance
 ii. component settings
 iii. component values
 iv. electrical and electronic values
 v. system performance and operation
 vi. drive belts
 vii. controls
 viii. compressors
 ix. condensers
x. receivers
xi. dryers
xii. connections
xiii. valve
xiv. hoses
xv. thermostats and refrigerants
xvi. sensors
xvii. speed controls
xviii. control systems
xix. servomotors
d. Use of appropriate tools and equipment including:
i. pressure gauges
ii. multi-meter
iii. breakout box
iv. oscilloscope
v. diagnostic tester
vi. manufacturer’s dedicated equipment
vii. flow meter
e. Evaluate and interpret test results from diagnostic testing.
f. Compare test result, values and fault codes with vehicle manufacturer’s specifications and settings
g. How to dismantle, components and systems using appropriate equipment and procedures
h. How to assess, examine and measure components including: settings, input and output values, voltages, current consumption, resistance, output patterns with oscilloscope, pressures, condition, wear and performance of components and systems
i. Identification of probable faults and indications of faults, malfunctions, incorrect settings, wear, values, inputs and outputs, fault codes, pressures and leaks
j. Rectification or replacement procedures
k. Evaluation and operation of components and systems following diagnosis and repair to confirm system performance