Assessment Requirements

Unit LV08K – Knowledge in Diagnosis and Rectification of Light Vehicle Chassis Faults

Content:

Electrical and electronic principles of light vehicle chassis systems
a. The operation of electrical and electronic systems and components related to light vehicle chassis systems including:
 i. ECU
 ii. sensors and actuators
 iii. electrical inputs
 iv. voltages
 v. oscilloscope patterns
 vi. digital and fibre optic principles
b. The interaction between the electrical/electronic system and mechanical components of chassis systems.
c. Electronic and electrical safety procedures.

Operation of electronic ABS and EBD braking systems
a. Layout of:
 i. ABS and EBD braking systems
 ii. anti-lock braking
 iii. anti-skid control systems
 iv. warning systems
b. Operation of:
 i. hydraulic and electronic control units
 ii. wheel speed sensors
 iii. load sensors
 iv. hoses
 v. cables and connectors
 vi. hoses
 vii. hoses
 viii. ABS and EBD braking systems
 ix. ABS and EBD braking systems
 x. ABS and EBD braking systems
 xi. ABS and EBD braking systems
 xii. ABS and EBD braking systems
c. Advantage of ABS and EBD braking systems over conventional braking systems.
d. The relationship and interaction of ABS braking with other vehicle systems – traction control.

Steering geometry for light vehicle applications
a. Non-steered wheel geometry settings.
b. Front/rear wheel geometry:
 i. castor
 ii. camber
 iii. kingpin or swivel pin inclination
 iv. negative offset
 v. wheel alignment (tracking)
 vi. toe in and toe out
 vii. toe out on turns and steered wheel geometry
 viii. Ackerman principle
 ix. slip angles
 x. self-aligning torque
 xi. oversteer and understeer
 xii. neutral steer
c. The operation and layout of rear and four wheel steering.
d. The construction and operation of power assisted steering systems:
 i. hydraulic system

The Institute of the Motor Industry
Final Draft – July 2010
Components and operation of self-levelling suspension
a. The components, construction and operation of a self-levelling suspension system.

 b. The operation of self-levelling suspension system under various conditions:
 i. self-energising
 ii. pump operated self-levelling suspension

Operation of fitting ride-controlled systems.

 a. The reasons for fitting ride controlled systems.
 b. The operation of driver controlled and ride controlled systems.

Symptoms and faults in braking systems

 a. Symptoms and faults associated with conventional braking systems, ABS, and EBD systems:
 i. mechanical
 ii. hydraulic
 iii. electrical and electronic systems
 iv. fluid leaks
 v. warning light operation
 vi. poor brake efficiency
 vii. wheel locking under braking

Diagnosis and faults in braking systems

 a. Locate and interpret information for:
 i. diagnostic tests
 ii. vehicle and equipment specifications
 iii. use of equipment
 iv. testing procedures
 v. test plans
 vi. fault codes
 vii. legal requirements

 b. Prepare equipment for use in diagnostic testing.

 c. Conduct systematic testing and inspection of:
 i. braking system
 ii. ABS
 iii. EBD
 iv. mechanical
 v. hydraulic
 vi. electrical and electronic systems

 d. Using appropriate tools and equipment including:
 i. multi-meters
 ii. oscilloscope
 iii. pressure gauges

 e. Evaluate and interpret test results from diagnostic testing.

 f. Compare test result and values with vehicle manufacturer’s specifications and settings.

 g. How to dismantle, components and systems using appropriate equipment and procedures.

 h. Assess, examine and evaluate the operation, settings, values, condition and performance of components and systems.

 i. Probable faults, malfunctions, incorrect settings.

 j. Rectification or replacement procedures.
k. Operation of systems following diagnosis and repair to confirm operation and performance.

Symptoms and faults associated with steering systems
a. Symptoms and faults associated with steering systems:
 i. mechanical
 ii. hydraulic
 iii. electrical and electronic
 iv. steering boxes (rack and pinion, worm and re-circulating ball)
 v. steering arms and linkages
 vi. steering joints and bushes
 vii. idler gears
 viii. bearings
 ix. steering columns (collapsible and absorbing)
 x. power steering system

Diagnosis and faults in steering systems
a. Locate and interpret information for:
 i. diagnostic tests
 ii. vehicle and equipment specifications
 iii. use of equipment
 iv. testing procedures
 v. test plans
 vi. fault codes
 vii. legal requirements
b. How to prepare equipment for use in diagnostic testing.
c. Conduct systematic testing and inspection of:
 i. steering systems
 ii. mechanical
 iii. hydraulic
 iv. electrical and electronic systems
 v. power steering system
d. Using appropriate tools and equipment including:
 i. multi-meters
 ii. oscilloscope
 iii. pressure gauges
 iv. wheel alignment equipment
 v. steering geometry equipment
e. Evaluate and interpret test results from diagnostic testing.
f. Compare test result and values with vehicle manufacturer’s specifications and settings.
g. How to dismantle, components and systems using appropriate equipment and procedures.
h. Assess, examine and evaluate the:
 i. operation
 ii. settings
 iii. values
 iv. condition and performance of components and systems
i. Probable faults, malfunctions, and incorrect settings.
j. Rectification or replacement procedures.
k. Operation of systems following diagnosis and repair to confirm operation and performance.

Symptoms and faults associated with suspension systems
a. Symptoms and faults associated with suspension systems:
 i. mechanical
 ii. hydraulic
 iii. electrical and electronic
 iv. conventional
Diagnosis and faults in suspension systems

a. Locate and interpret information for:
 i. diagnostic tests
 ii. vehicle and equipment specifications
 iii. use of equipment
 iv. testing procedures
 v. test plans
 vi. fault codes
 vii. legal requirements

b. How to prepare equipment for use in diagnostic testing.

c. How to conduct systematic testing and inspection of:
 i. suspension systems
 ii. mechanical
 iii. hydraulic
 iv. electrical and electronic systems
 v. conventional
 vi. self-levelling and ride controlled suspension systems

d. Using appropriate tools and equipment including:
 i. multi-meters
 ii. oscilloscope
 iii. pressure gauges
 iv. alignment equipment
 v. geometry equipment

d. Evaluate and interpret test results from diagnostic testing.

e. Compare test result and values with vehicle manufacturer's specifications and settings.

f. How to dismantle, components and systems using appropriate equipment and procedures.

g. Assess, examine and evaluate the operation, settings, values, condition and performance of components and systems.

h. Probable faults, malfunctions and incorrect settings.

i. Rectification or replacement procedures.

k. Operation of systems following diagnosis and repair to confirm operation and performance.

Measurements on components to include:

a. settings
b. input and output values
c. voltages
d. current consumption
e. resistance
f. output patterns with oscilloscope
g. pressures
h. condition
i. wear and performance