

Assessment Requirements

Unit LV12K – Knowledge of Light Vehicle Transmission and Driveline Units and Components

Content:

The operation of clutch operating systems

- a. Clutch operating mechanisms
 - i. pedal and lever
 - ii. hydraulic operated
 - iii. mechanical
 - iv. cable operated
 - v. hydraulic components
 - vi. master cylinder
 - vii. slave cylinder
 - viii. hydraulic pipes
 - ix. electrical and electronic components (fluid level indicators)

The operation of friction clutches

- a. The reasons for fitting a clutch.
- b. The construction and operation of:
 - i. hydraulically and cable operated clutches
 - ii. coil spring clutches
 - iii. diaphragm spring clutches
 - iv. single plate clutches
 - v. multi plate clutches

The operation of manual gearboxes

- a. The reasons for fitting gearboxes, to provide neutral, reverse, torque multiplication.
- b. Different gearbox types: transverse and inline layouts.
- c. The layout and construction of gears and shafts for 4, 5 and 6 speed gearbox designs, sliding mesh, constant mesh and synchromesh gearboxes reverse gear,
- d. The construction and operation of:
 - i. gear selection linkages
 - ii. selector forks and rods
 - iii. detents and interlock mechanisms
- e. The construction and operation of synchromesh devices.
- f. The arrangements for gearbox bearings:
 - i. bushes
 - ii. oil seals
 - iii. gaskets and gearbox lubrication
 - iv. speedometer drive
- g. The electrical and electronic components including reverse lamp switch
- h. Calculate gear ratios and driving torque for typical gearbox specifications.

The operation of driveline components

- a. The layout and construction of propshafts and drive shafts used in front wheel, rear wheel and fourwheel drive systems.
- b. The reasons for using flexible couplings and sliding joints in transmissions systems.
- c. The reason for using constant velocity joints in drive shafts incorporating steering mechanisms.
- d. The construction and operation of:
 - i. universal joints

The Institute of the Motor Industry Final Draft – July 2010

- ii. sliding couplings
- iii. constant velocity joints
- e. The simple stresses applied to shafts: torsional, bending and shear.
- The construction and operation of: f
 - i. final drive units
 - ii. crown wheel & pinion
 - iii. bevel
 - iv. hypoid and helical gears

 - v. differential gears vi. sun & planet gears
 - vii. lubricants
 - viii. lubrication bearings and seals
 - ix. limited slip differential
- g. The reasons for fitting a differential.
- h. Calculate final drive gear ratios.
- Calculate the overall gear ratio from given data (gearbox ratio x final drive ratio). i.

The testing and inspection techniques used for light vehicle transmission systems

- The techniques and procedures used for inspecting and testing clutches and clutch mechanisms a. including:
 - i. clearances
 - ii. pedal and lever settings
 - iii. cables & linkages
 - iv. hydraulic system
 - v. leaks
 - vi. adjustments
 - vii. travel
- b. The techniques and procedures used for inspecting and testing gearboxes including:
 - i. leaks
 - ii. gear selection
 - iii. synchromesh operation
 - iv. abnormal noise
- c. The techniques and procedures used for inspecting and testing drive line systems (prop & drive shafts, couplings) including:
 - i. security
 - ii. serviceability of rubber boots
 - iii. leaks
 - iv. alignment
 - v. balance weights (where applicable)
- d. The techniques used when inspecting and testing final drive systems including:
 - i. fluid levels
 - leaks ii.
 - iii. noise

The faults and symptoms associated with vehicle transmissions systems

- The faults and symptoms associated with transmission systems: a.
 - i. clutch faults
 - ii. gearbox faults
 - iii. drive line faults (propshaft, drive shaft
 - iv. universal and constant velocity joints)
 - v. universal joint alignment
 - vi. final drive faults
- b. Faults and symptoms to include mechanical, electrical and hydraulic systems.

The procedures for dismantling, removal and replacement of transmission units and components

- a. The preparation, testing and use of tools and equipment, electrical meters and equipment used for dismantling removing and replacing transmission systems and components.
- b. appropriate safety precautions:
 - i. PPE
 - ii. vehicle protection when dismantling
 - iii. removing and replacing transmission systems and components
- c. The importance of logical and systematic processes.
- d. The inspection and testing of transmission systems and components
- e. The preparation of replacement units for re-fitting or replacement of transmission systems or components.
- f. The reasons why replacement components and units must meet the original specifications (OES): i. warranty requirements
 - ii. to maintain performance
 - iii. safety requirements
- g. Refitting procedures.
- i. The inspection and testing of units and system to ensure compliance with manufacturer's, legal and performance requirements.
- j. The inspection and re-instatement of the vehicle following repair to ensure customer satisfaction:
 - i. cleanliness of vehicle interior and exterior
 - ii. security of components and fittings
- a. re-instatement of components and fittings

Types of wheel bearing arrangements:

- i. driven wheels
- ii. fully floating
- iii. three quarter floating
- iv. semi floating axles