Assessment Requirements

Unit LV12K – Knowledge of Light Vehicle Transmission and Driveline Units and Components

Content:

The operation of clutch operating systems
a. Clutch operating mechanisms
 i. pedal and lever
 ii. hydraulic operated
 iii. mechanical
 iv. cable operated
 v. hydraulic components
 vi. master cylinder
 vii. slave cylinder
 viii. hydraulic pipes
 ix. electrical and electronic components (fluid level indicators)

The operation of friction clutches
a. The reasons for fitting a clutch.
b. The construction and operation of:
 i. hydraulically and cable operated clutches
 ii. coil spring clutches
 iii. diaphragm spring clutches
 iv. single plate clutches
 v. multi plate clutches

The operation of manual gearboxes
a. The reasons for fitting gearboxes, to provide neutral, reverse, torque multiplication.
b. Different gearbox types: transverse and inline layouts.
c. The layout and construction of gears and shafts for 4, 5 and 6 speed gearbox designs, sliding mesh, constant mesh and synchromesh gearboxes reverse gear,
d. The construction and operation of:
 i. gear selection linkages
 ii. selector forks and rods
 iii. detents and interlock mechanisms
f. The arrangements for gearbox bearings:
 i. bushes
 ii. oil seals
 iii. gaskets and gearbox lubrication
 iv. speedometer drive
g. The electrical and electronic components including reverse lamp switch
h. Calculate gear ratios and driving torque for typical gearbox specifications.

The operation of driveline components
a. The layout and construction of propshafts and drive shafts used in front wheel, rear wheel and four-wheel drive systems.
b. The reasons for using flexible couplings and sliding joints in transmissions systems.
c. The reason for using constant velocity joints in drive shafts incorporating steering mechanisms.
d. The construction and operation of:
 i. universal joints
ii. sliding couplings
iii. constant velocity joints

e. The simple stresses applied to shafts: torsional, bending and shear.

f. The construction and operation of:
i. final drive units
ii. crown wheel & pinion
iii. bevel
iv. hypoid and helical gears
v. differential gears
vi. sun & planet gears
vii. lubricants
viii. lubrication bearings and seals
ix. limited slip differential

g. The reasons for fitting a differential.

h. Calculate final drive gear ratios.
i. Calculate the overall gear ratio from given data (gearbox ratio x final drive ratio).

The testing and inspection techniques used for light vehicle transmission systems

a. The techniques and procedures used for inspecting and testing clutches and clutch mechanisms including:
i. clearances
ii. pedal and lever settings
iii. cables & linkages
iv. hydraulic system
v. leaks
vi. adjustments
vn. travel

b. The techniques and procedures used for inspecting and testing gearboxes including:
i. leaks
ii. gear selection
iii. synchromesh operation
v. abnormal noise

c. The techniques and procedures used for inspecting and testing drive line systems (prop & drive shafts, couplings) including:
i. security
ii. serviceability of rubber boots
iii. leaks
iv. alignment
v. balance weights (where applicable)

d. The techniques used when inspecting and testing final drive systems including:
i. fluid levels
ii. leaks
iii. noise

The faults and symptoms associated with vehicle transmissions systems

a. The faults and symptoms associated with transmission systems:
i. clutch faults
ii. gearbox faults
iii. drive line faults (propshaft, drive shaft
iv. universal and constant velocity joints
v. universal joint alignment
vi. final drive faults

b. Faults and symptoms to include mechanical, electrical and hydraulic systems.
The procedures for dismantling, removal and replacement of transmission units and components

a. The preparation, testing and use of tools and equipment, electrical meters and equipment used for dismantling removing and replacing transmission systems and components.

b. appropriate safety precautions:
 i. PPE
 ii. vehicle protection when dismantling
 iii. removing and replacing transmission systems and components

c. The importance of logical and systematic processes.

d. The inspection and testing of transmission systems and components

e. The preparation of replacement units for re-fitting or replacement of transmission systems or components.

f. The reasons why replacement components and units must meet the original specifications (OES):
 i. warranty requirements
 ii. to maintain performance
 iii. safety requirements

g. Refitting procedures.
 i. The inspection and testing of units and systems to ensure compliance with manufacturer's, legal and performance requirements.

j. The inspection and re-instatement of the vehicle following repair to ensure customer satisfaction:
 i. cleanliness of vehicle interior and exterior
 ii. security of components and fittings

a. re-instatement of components and fittings

Types of wheel bearing arrangements:
 i. driven wheels
 ii. fully floating
 iii. three quarter floating
 iv. semi floating axles