Assessment Requirements

Unit LV13K – Knowledge of Diagnosis and Rectification of Light Vehicle Transmission and Driveline Faults

Content:

Electrical and electronic principles related to light vehicle transmission systems
a. The operation of electrical and electronic systems and components related to light vehicle transmission systems including:
 i. ECU
 ii. sensors and actuators
 iii. electrical inputs & outputs
 iv. voltages
 v. oscilloscope patterns
 vi. digital and fibre optic principles
b. The interaction between the electrical/electronic system, hydraulic system and mechanical components of the transmission systems.
c. Electronic and electrical safety procedures.

The operation light vehicle clutches and fluid couplings
a. The construction and operation of friction clutches (coil spring, diaphragm) including single and twin clutch designs.
b. The construction and operation of fluid couplings including:
 i. fluid flywheel
 ii. torque converter (torque multiplication, efficiency)
 iii. benefits of fluid couplings
 iv. benefits of torque converter over fluid flywheel

The operation of light vehicle transmissions and driveline systems
a. The construction and operation of manual gearboxes:
 i. 4, 5 & 6 speed gearboxes
 ii. gear arrangements
 iii. shaft and bearing arrangements
 iv. synchromesh devices
 v. interlock mechanisms
 vi. linkages
 vii. overdrive
 viii. lubrication
b. The construction and operation of automatic gearboxes including hydraulic and electronic control systems: operations of epicyclic gears (sun, planet, annulus and carrier), method for achieving different gear ratios using epicyclic gearing; hydraulic control systems, components and operation; electronic control system, components and operation.
c. The construction and operation of continuously variable transmissions (CVT) and the benefits of this type of gearbox design.
d. The construction and operation of the sequential manual gearbox (SMG).
e. The construction and operation of final drive systems including:
 i. conventional crown wheel and pinion
 ii. differential gears
 iii. limited slip differential
f. The construction and operation of light vehicle 4 wheel drive systems including third differential and differential locks.
g. The operation of light vehicle traction control systems and launch control.
h. The construction and operation of light vehicle hub arrangements.
i. The construction and operation of:
 i. drive shafts
 ii. prop shafts including flexible joints and couplings
 iii. universal joints
 iv. constant velocity joints
 v. sliding joints

Symptoms and faults in light vehicle transmissions and drive-line systems
a. Clutch and coupling faults:
 i. abnormal noises
 ii. vibrations
 iii. fluid leaks
 iv. slip
 v. judder
 vi. grab
 vii. failure to release
b. Gearbox faults:
 i. abnormal noises
 ii. vibrations
 iii. loss of drive
 iv. difficulty engaging or disengaging gears
 v. automatic gear box types
 vi. abnormal noises
 vii. vibrations
 viii. loss of drive
 ix. failure to engage gear
 x. failure to disengage gear
 xi. leaks
 xii. failure to operate
 xiii. incorrect shift patterns
 xiv. electrical and electronic faults
c. Final drive faults:
 i. abnormal noises
 ii. vibrations
 iii. loss of drive
 iv. oil leaks
 v. failure to operate
 vi. electrical and electronic faults
d. Drive-lines and couplings:
 i. abnormal noises
 ii. vibrations
 iii. loss of drive

Faults in light vehicle transmission systems
a. Interpret information for diagnostic tests, vehicle and equipment specifications, use of equipment, testing procedures, test plans, fault codes and legal requirements.
b. How to prepare equipment for use in diagnostic testing.
c. How to conduct systematic testing and inspection of transmission system, mechanical, hydraulic, electrical and electronic systems using appropriate tools and equipment including, mullet-meters, oscilloscope and pressure gauges.
d. How to carry out workshop based and road testing of vehicle and transmission system.
e. Evaluate and interpret test results from diagnostic and/or road testing.
f. Compare test result and values with vehicle manufacturer’s specifications and settings.
g. How to dismantle, components and systems using appropriate equipment and procedures.
h. Assess, examine and evaluate the operation, settings, values, condition and performance of components and systems.

i. Probable faults, malfunctions and incorrect settings.

j. Rectification or replacement procedures.

k. Operation of systems following diagnosis and repair to confirm operation and performance.

Measurements on components to include:

i. Settings

ii. Input and output values

iii. Voltages

iv. Current consumption

v. Resistance

vi. Output patterns with oscilloscope

vii. Pressures

viii. Condition

ix. Wear and performance