

Maintenance & Repair - Light Vehicle (Syllabus content)

Assessment Requirements

Unit G01/02K – Knowledge of Health, Safety and Good Housekeeping in the Automotive Environment

Content:

Economic use of Resources

a. consumable materials e.g. grease, oils, split pins, locking and fastening devices etc.

Requirement to maintain work area effectively

- a. cleaning tools and equipment to maximise workplace efficiency.
- b. requirement to carry out the housekeeping activities safely and in a way that minimises inconvenience to customers and staff.
- c. risks involved when using solvents and detergents.
- d. advantages of good housekeeping.

Spillages, leaks and waste materials

- a. relevance of safe systems of work to the storage and disposal of waste materials.
- b. requirement to store and dispose of waste, used materials and debris correctly.
- c. safe disposal of special / hazardous waste materials.
- d. advantages of recycling waste materials.
- e. dealing with spillages and leaks

Basic legislative requirements

- a. Provision and Use of Work Equipment Regulations 1992.
- b. Power Presses Regulations 1992.
- c. Pressure Systems and Transportable Gas Containers Regulations 1989.
- d. Electricity at Work Regulations 1989.
- e. Noise at Work Regulations 1989.
- f. Manual Handling Operations Regulations 1992.
- g. Health and Safety (Display Screen Equipment) Regulations 1992.h. Abrasive Wheel Regulations.
- i. Safe Working Loads.
- i. Working at Height Regulations (date)

Routine maintenance of the workplace

- a. Trainees personal responsibilities and limits of their authority with regard to work equipment.
- b. Risk assessment of the workplace activities and work equipment.
- c. Workplace person responsible for training and maintenance of workplace equipment.
- d. When and why safety equipment must be used.
- e. Location of safety equipment.
- f. Particular hazards associated with their work area and equipment.
- h. Plant and machinery that trainees must **not** use or operate.
- i. Why and how faults on unsafe equipment should be reported.
- j. Storing tools, equipment and products safely and appropriately.
- k. Using the correct PPE.
- I. Following manufacturers' recommendations.

m. Location of routine maintenance information e.g. electrical safety check log.

Legislation relevant to Health and Safety

- i. HASAWA
- ii. COSHH
- iii. EPA
- iv. Manual Handling Operations Regulations 1992
- v. PPE Regulations 1992

General regulations to include an awareness of:

- Health and Safety (Display Screen Equipment) Regulations 1992
- ii. Health and Safety (First Aid) Regulations 1981
- iii. Health and Safety (Safety Signs and Signals) Regulations 1996
- iv. Health and Safety (Consultation with Employees) Regulations 1996
- v. Employers Liability (Compulsory Insurance) Act 1969 and Regulations 1998
- vi. Confined Spaces Regulations 1997
- vii. Noise at Work Regulations 1989
- viii. Electricity at Work Regulations 1989
- ix. Electricity (Safety) Regulations 1994
- x. Fire Precautions Act 1971
- xi. Reporting of Injuries, Diseases and Dangerous Occurrences Regulations 1985
- xii. Pressure Systems Safety Regulations 2000
- xiii. Waste Management 1991
- xiv. Dangerous Substances and Explosive Atmospheres Regulations (DSEAR) 2002
- xv. Control of Asbestos at Work Regulations 2002

Legislative duties

- a. The purpose of a Health and Safety Policy.
- b. The relevance of the Health and Safety Executive.
- c. The relevance of an initial induction to Health and Safety requirements at your workplace.
- d. General employee responsibilities under the HASAWA and the consequences of non-compliance.
- General employer responsibilities under the HASAWA and the consequences of noncompliance.
- f. The limits of authority with regard to Health and Safety within a personal job role.
- g. Workplace procedure to be followed to report Health and Safety matters.

Precautions to be taken when working with vehicles, workshop materials, tools and equipment including electrical safety, pneumatics and hydraulics

- a. Accessing and interpreting safety information
- b. Seeking advice when needed
- c. Seeking assistance when required
- d. Reporting of unsafe equipment
- e. Storing tools, equipment and products safely and appropriately
- f. Using the correct PPE
- g. Following manufacturers recommendations
- h. Following application procedures e.g. hazardous substances
- i. The correct selection and use of extraction equipment

PPE to include:

- a. Typical maintenance procedures for PPE equipment to include:
 - i. typical maintenance log
 - ii. cleaning procedures
 - iii. filter maintenance
 - iv. variation in glove types

- v. air quality checks
- b Choice and fitting procedures for masks and air breathing equipment.
- c. Typical workplace processes which would require the use of PPE to include:
 - i. welding
 - ii. sanding and grinding
 - iii. filling
 - iv. panel removal and replacement
 - v. drilling
 - vi. cutting
 - vii. chiselling
 - viii. removal of broken glass
 - ix. removal of rubber seals from fire damaged vehicles
 - x. removal of hypodermic needles
 - xi. servicing activities
 - xii. roadside recovery
- d. Unserviceable PPE.
- e. PPE required for a range automotive repair activities. To include appropriate protection of:
 - i. eyes
 - ii. ears
 - iii. head
 - iv. skin
 - v. feet
 - vi. hands
 - vii. lungs

Fire and extinguishers

- a. Classification of fire types
- b. Using a fire extinguisher effectively.

Types of Extinguishers

- a. foam
- b. dry powder
- c. CÓ2
- d. water
- e. fire blanket

Action to be taken in the event of a fire to include:

- a. The procedure as:
 - i. raise the alarm
 - ii. fight fire only if appropriate
 - iii. evacuate building
 - iv. call for assistance

Product warning labels to include:

- a. Reasons for placing warning labels on containers.
- b. Warning labels in common use, to include:
 - i. toxic
 - ii. corrosive
 - iii. poisonous
 - iv. harmful
 - v. irritant
 - vi. flammable
 - vii. explosive

Warning signs and notices

a. Colours used for warning signs:

- i. red
- ii. blue
- iii. green
- b Shapes and meaning of warning signs:
 - i. round
 - ii. triangular
 - iii. square
- c. The meaning of prohibitive warning signs in common use.
- d. The meaning of mandatory warning signs in common use.
- e. The meaning of warning notices in common use.
- f. General design of safe place warning signs.

Hazards and risks to include:

- a. The difference between a risk and a hazard.
- b. Potential risks resulting from:
 - i. the use and maintenance of machinery or equipment
 - ii. the use of materials or substances
 - iii. accidental breakages and spillages
 - iv. unsafe behaviour
 - v. working practices that do not conform to laid down policies
 - vi. environmental factors
 - vii. personal presentation
 - viii. unauthorised personal, customers, contractors etc entering your work premises
 - ix. working by the roadside
 - x. vehicle recovery
- The employee's responsibilities in identifying and reporting risks within their working environment.
- d. The method of reporting risks that are outside your limits of authority.
- e. Potential causes of:
 - i. fire
 - ii. explosion
 - iii. noise
 - iv. harmful fumes
 - v. slips
 - vi. trips
 - vii falling objects
 - viii accidents whilst dealing with broken down vehicles

Personal responsibilities

- a. The purpose of workplace policies and procedures on:
 - i. the use of safe working methods and equipment
 - ii. the safe use of hazardous substances
 - iii. smoking, eating, drinking and drugs
 - iv. emergency procedures
 - v. personal appearance
- b. The importance of personal appearance in the control of health and safety.

Action to be taken in the event of colleagues suffering accidents

- a. The typical sequence of events following the discovery of an accident such as:
 - i. make the area safe
 - ii. remove hazards if appropriate i.e. switch off power
 - iii. administer minor first aid
 - iv. take appropriate action to re-assure the injured party
 - v. raise the alarm

- vi. get help
- vii. report on the accident
- b Typical examples of first aid which can be administered by persons at the scene of an accident:
 - i. check for consciousness
 - ii. stem bleeding
 - iii. keep the injured person's airways free
 - iv. place in the recovery position if injured person is unconscious
 - v. issue plasters for minor cuts
 - vi. action to prevent shock i.e. keep the injured party warm
 - vii. administer water for minor burns or chemical injuries
 - viii. wash eyes with water to remove dust or ingress of chemicals (battery acid)
 - ix. need to seek professional help for serious injuries
- c Examples of bad practice which may result in further injury such as:
 - i. moving the injured party
 - ii. removing foreign objects from wounds or eyes
 - iii. inducing vomiting
 - iv straightening deformed limbs

Unit G3K – Knowledge of Support for Job Roles in the Automotive Environment

Content:

The structure of a typical vehicle repair business

- a. How these areas relate to each other within the business
 - i. body shop
 - ii. vehicle repair workshop
 - iii. paint shop
 - iv. valeting
 - v. vehicle parts store
 - vi. main office
 - vii. vehicle sales
 - viii reception
- b. Sources of information
 - a. other staff
 - b. manuals
 - c. parts lists
 - d. computer software and the internet
 - e. manufacturer
 - f. diagnostic equipment

Communication requirements when carrying out vehicle repairs

- a. Locating and using correct documentation and information for:
 - i. recording vehicle maintenance and repairs
 - ii. vehicle specifications
 - iii. component specifications
 - iv. oil and fluid specifications
 - v. equipment and tools
 - vi. identification codes
- b. Procedures for:
 - i. referral of problems
 - ii. reporting delays
 - iii. additional work identified during repair or maintenance
 - iv. keeping others informed of progress

Methods of Communication

- a. verbal
- b. signs and notices

- c. memos
- d. telephone
- e. electronic mail
- f. vehicle job card
- g. notice boards
- h. SMS text messaging
- i. Letters
- a. Organisational & Customer requirements:
 - i. importance of time scales to customer and organization
 - ii. relationship between time and costs
 - iii. meaning of profit
- b. Choice of Communication
 - a. distance
 - b. location
 - c. job responsibility
- b. Importance of maintaining positive working relationships:
 - a. morale
 - b. productivity
 - c. company image
 - d. customer relationships
 - e. colleagues

Unit G4K – Knowledge of Materials, Fabrication, Tools and Measuring Devices used in the Automotive Environment

Content:

Common types of hand tools used for fabricating and fitting in the automotive workplace. To include:

- a. files
- b. hacksaws and snips
- c. hammers
- d. screwdrivers
- e. pliers
- f. spanners
- g. sockets
- h. punches
- i. types of drill and drill bits
- j. taps and dies
- k. stud removers
- I. marking out tools

Common measuring devices used for fabrication and fitting in the automotive workplace.

To include:

- a. rule/tape
- b. callipers
- c. feeler gauge
- d. volume measures
- e. micrometer
- f. dial gauges
- g. torque wrenches
- h. depth gauges

Common electrical measuring tools used in the repair of vehicles and components. To include:

- a. ammeter
- b. voltmeter
- c. ohmmeter
- d. multi-meter

Common electrical terms when measuring:

- a. voltage
- b. current
- c. resistance

Workshop equipment (including appropriate PPE). To include:

- a. hydraulic jacks
- b. axle stands
- c. pillar drills
- d. air tools
- e. vehicle lifts
- f. cranes

- g. hoists
- h. electrical power tools

Properties, application and limitations (to include safe use) of ferrous and non-ferrous metals used when constructing, modifying and repairing vehicles and components. Materials to include:

- a. carbon steels
- b. alloy steels
- c. cast iron
- d. aluminium alloys
- e. brass
- f. copper
- g. lead

Properties, application and limitations (to include safe use) of non-metallic materials used when constructing, modifying and repairing vehicles and components. Materials to include:

- a. glass
- b. plastics (inc. GRP)
- c. Kevlar
- d. rubber

Terms relating to the properties of materials. To include:

- a. hardness
- b. toughness
- c. ductility
- d. elasticity
- e. tenacity
- f. malleability
- g. plasticity

Unit G6K - Knowledge of how to Make Learning Possible through Demonstrations and Instruction

Content:

Separate areas of demonstration which encourage learning. To include:

- a. demonstration is particularly applicable to learning manual skills.
- b. learning to do something usually involves:
 - i. purpose the aim or objective
 - ii. procedure the most effective way of completing the task
 - iii. practice all skills require practice to improve
- c. practical tasks are more quickly learnt through demonstration.
- d. emphasis is required to body movements when demonstrating.
- e. the demonstrator should encourage learners to ask questions.
- f. emphasis should be placed upon key points whilst demonstrating.
- g. any demonstration should ensure that all safety aspects are covered.

Types of learning which are best achieved and supported through demonstrations. To include:

- a. types of learning:
 - i. psychomotor measurement of manual skill performance
 - ii. cognitive learning involving thought processes iii. affective demonstration of feelings, emotions of
 - demonstration of feelings, emotions or attitudes
- b. demonstration involves learning to do something (Psychomotor Domain).
- c. combination of instruction and practical demonstrations are very effective means of learning practical skills.

How to structure demonstration and instruction sessions. To include:

- a. Before the demonstration and/or instruction ensure that the following good practice is recognised:
 - i. identify key points
 - ii. relate theoretical underpinning knowledge to key points
 - iii. rehearse to ensure that all equipment is working
 - iv. ensure all students can see even small equipment and processes
 - v. time the demonstration
 - vi. consider how to make students participate
 - vii. consider how to emphasise safe working practices
- b. During the demonstration and/or instruction good practice is to:
 - give a clear introduction
 - identify any tools/equipment
 - iii. determine the current audience level of knowledge
 - iv. complete the demonstration correctly (do not show how not to do it)
 - v. stress key points and show links between them
 - vi. monitor safety aspects
 - vii. check learner understanding
- c. After the demonstration(if possible)
 - enable the audience to practice the techniques
 - ii. provide feedback on their performance

How to identify individual learning needs

a. Diagnose the learning needs of your audience to include:

- i. what competencies they already have
- ii. what experience they have of the subject area
- iii. what competencies they need to achieve
- iv. what demonstration techniques are best suited to their needs
- v. how you will assess their needs have been met

What factors are likely to prevent learning. To include:

- i. language barriers
- ii. physical barriers
- iii. specialist knowledge
- iv. pace of learning
- v. method of delivery
- vi. environmental factors
- vii. teaching styles
- viii. dyslexia

How to check learners understanding and progress

- a. Questionnaires.
- b. Verbal questioning.
- c. Observation.
- d. Assessment.
- e. Role play.
- f. Projects/assignments.
- g. Multi-choice questions.
- h. Simulation.
- i. Tests.

How to organise information and prepare materials

- a. Identify the course aim.
- b. Identify the subject aim.
- c. Identify the lesson aim.
- d. Complete a lesson plan plan the teaching.
- e. Identify a series of 'cues' to be used during the lesson.
- f. Logically organise the information.
- g. Use suitable resources and equipment to maximise learning opportunities.
- h. Assess the learners progress and understanding.

Instructional techniques

- a. types of instructional techniques to include:
 - i. lectures
 - ii. handouts
 - iii. team teaching
 - iv. peer teaching
 - v. discussion individual, group and peer
 - vi. question and answer
 - vii. multimedia
 - viii. seminars
 - ix. case studies
 - x. project/assignments

Environmental factors that effect learning

- a. environmental factors that should be considered before demonstration/instruction to include:
 - i. loud noises
 - ii. bright colours
 - iii. bright lights

- iv. strong smells
- v. atmosphere
- vi. temperature
- vii. classroom seating
- viii. classroom layout
- ix. bright lights

Health and safety factors that affect learning

- health and safety factors that should be considered before demonstration/instruction to include:
 - i. assessment of risk and hazards
 - ii. condition of electrical/electronic equipment
 - iii. position of cables and wires
 - iv. safety of equipment used in demonstration/instruction
 - v. condition of classroom equipment/furniture/structure
 - vi. suitable protective clothing/equipment

Analysis of demonstration/instruction

- a. Analysis of demonstration/instruction to include:
 - i. feedback from students
 - ii. feedback from colleagues
 - iii. organisational quality assessment
 - iv. feedback from external organisations
 - v. awarding body requirements

Developments in learning. To include:

- i. multimedia based materials
- ii. web based materials
- iii interactive materials

How to choose and prepare appropriate materials. To include:

- a. putting information in order
- b. deciding whether the language used is appropriate
- c. type of material i.e. paper and technology based etc.

Unit G8K – Knowledge of how to Identify and Agree Customer Service Needs

Content:

Organisational Requirements

- a. Explain the organisation's terms and conditions applicable to the acceptance of customer vehicles.
- b. Explain the content and limitations of vehicle and component warranties for the vehicles dealt with by your organisation.
- c. Detail what, if any, limits there are to the authority for accepting vehicles.
- d. Detail why it is important to keep customers advised of progress and how this is achieved within the organisation.
- e. Detail the organisation's procedures for the completion and processing of documentation and records, including payment methods and obtaining customer signatures as applicable.

Principles of Customer Communication and Care.

- a. First Impressions.
- b. Listening skills 80:20 ratio.
- c. Eye contact and smiling.
- d. Showing interest and concern.
- e. Questioning techniques and customer qualification.
- f. Giving clear non-technical explanations.
- g. Confirming understanding (statement/question technique, reflective summary).
- h. Written communication purpose, content, presentation and style.
- Providing a high quality service fulfilling (ideally exceeding) customer expectations within agreed time frames.
- j. Obtaining customer feedback and corrective actions when dissatisfaction expressed.
- k. Dealing with complaints.

Company Products and Services

- a. Service standards
 - i. national
 - ii. manufacturer
 - iii. organisational
- b. The range and type of services offered by the organisation.
 - i. diagnostic.
 - ii. servicing.
 - iii. repair.
 - iv. warranty.
 - v. MOT testing.
 - vi. fitment of accessories/enhancements.
 - vii. internal.
- c. The courses of action available to resolve customer problems.
 - i. the extent and nature of the work to be undertaken.
 - ii. the terms and conditions of acceptance.
 - iii. the cost.
 - iv. the timescale.
 - v. required payment methods.
- d. The effect of resource availability upon the receipt of customer vehicles and the completion of work.

- i. levels and availability of equipment.
- ii. levels and availability of technicians.
- iii. workshop loading systems.
- e. How to access costing and work completion time information.
 - i. manuals.
 - ii. computer based.

Vehicle Information Systems, Servicing and Repair Requirements

- a. Accessing technical data including diagnostics.
- b. Servicing to manufacturer requirements/standards.
- c. Repair/operating procedures.
- d. MOT standards/requirements.
- e. Quality controls interim and final.
- f. Requirements for cleanliness of vehicle on return to customer.
- g. Handover procedures.

Consumer Legislation To include:

- a. consumer protection
- b. sale of goods
- c. data protection
- d. product liability
- e. health and safety
- f. discrimination

Unit LV01K - Knowledge of Routine Light Vehicle Maintenance

Content:

- a Vehicle maintenance, inspection and adjustment and record findings
- b Vehicle inspection techniques used in routine maintenance including:
 - i. aural
 - ii. visual and functional assessments on engine
 - iii. engine systems
 - iv. chassis systems
 - v. wheels and tyres
 - vi. transmission system
 - vii. electrical and electronic systems
 - viii. exterior vehicle body
 - ix. vehicle interior
- c The procedures used for inspecting the condition and serviceability of the following:
 - a. filters
 - b. drive belts
 - c. wiper blades
 - d. brake linings
 - e. pads
 - f. tyres
 - g. lights
- d Preparation and use appropriate use of equipment to include:
 - i. test instruments
 - ii. emission equipment
 - iii. wheel alignment
 - iv. beam setting equipment
 - v. tyre tread depth gauges
- e Procedures for checking and replenishing fluid levels:
 - i. oil
 - ii. water
 - iii. hydraulic fluids
- f Procedures for checking and replacement of lubricants:
 - replace oil filters
 - ii. check levels
 - iii. types of oil
 - iv. cleanliness
 - v. disposal of old oil and filters
- g Procedures for carrying out adjustments on vehicle systems or components:
 - i. clearances
 - ii. settings
 - iii. alignment
 - v. operational performance (engine idle, exhaust gas)
- h Procedures for checking electrical systems:
 - i. operation
 - ii. security
 - iii. performance
- Importance and process of detailed inspection procedures:
 - i. following inspection checklists
 - ii. checking conformity to manufacturer's specifications

- iii. UK and European legal requirements
- j Importance and process of completing all relevant documentation relating to routine maintenance:
 - i. inspection records
 - ii. job cards
 - iii. vehicle repair records
 - iv. in-vehicle service history
- k. The need to use vehicle protection prior to repair

Requirements and methods used for protecting:

- i. vehicle body panels
- ii. paint surfaces
- iii. seats
- iv. carpets and floor mats
- I. The need to check the vehicle following routine maintenance
- m. The need to inspect the vehicle following routine maintenance:
 - i. professional presentation of vehicle
 - ii. customer perceptions
- n. The checks of vehicle following routine maintenance:
 - i. removal of oil and grease marks
 - ii. body panels
 - iii. paint surfaces
 - iv. seats
 - v. carpets and floor mats
 - vi. re-instatement of components

Unit LV02.1K – Knowledge of Light Vehicle Engine Mechanical, Lubrication and Cooling System Units and Components

Content:

Engines

- a. Engine types and configurations:
 - i. inline
 - ii. flat
 - iii. vee
 - iv. four-stroke cycle and two-stroke cycle for spark ignition and compression ignition engines
 - v. naturally aspirated and turbo-charged engines
 - vi. hybrid fuel engines
- b. Relative advantages and disadvantages of different engine types and configurations.
- c. Engine components and layouts:
 - i. single (OHC) and multi camshaft (DOHC)
 - ii. single and multi cylinder (2, 4, 6, 8 cylinder types)
- d. Cylinder head layout and design, combustion chamber and piston design.
- e. Calculate compression ratios from given data.
- f. The procedures used when inspecting engines
- g. The procedures to assess:
 - i. serviceability
 - ii. wear
 - iii. condition
 - iv. clearances
 - v. settings
 - vi. linkages
 - vii. joints
 - viii. fluid systems
 - ix. adjustments
 - x. operation and functionality
 - xi. security
- h. Symptoms and faults associated with mechanical engine operation:
 - i. poor performance
 - ii. abnormal or excessive mechanical noise
 - iii. erratic running
 - iv. low power
 - v. exhaust emissions
 - vi. abnormal exhaust smoke
 - vii. unable to start
 - viii. exhaust gas leaks to cooling system
 - ix. exhaust gas leaks

Lubrication

- a. The advantages and disadvantages of wet and dry systems.
- b. Engine lubrication system:
 - i. splash and pressurised systems
 - ii. pumps

- iii. pressure relief valve
- iv. filters
- v. oil ways
- vi. oil coolers
- c. Terms associated with lubrication and engine oil:
 - i. full-flow
 - ii. hydrodynamic
 - iii. boundary
 - iv. viscosity
 - v. multi-grade
 - vi. natural and synthetic oil
 - vii. viscosity index
 - viii. multi-grade
- d. The requirements and features of engine oil:
 - i. operating temperatures
 - ii. pressures
 - iii. lubricant grades
 - iv. viscosity
 - v. multi-grade oil
 - vi. additives
 - vii. detergents
 - viii. dispersants
 - ix. anti-oxidants inhibitors
 - x. anti-foaming agents
 - xi. anti-wear
 - xii. synthetic oils
 - xiii. organic oils
 - xiv. mineral oils
- e. Symptoms and faults associated with lubrication systems:
 - i. excessive oil consumption
 - ii. oil leaks
 - iii. oil in water
 - iv. low or excessive pressure
 - v. oil contamination
- f. The procedures used when inspecting lubrication system

Cooling, Heating and Ventilation

- a. The components, operating principles, and functions of engine cooling systems
- b. Procedures used to remove, replace and adjust cooling system components
 - i. cooling fans and control devices
 - ii. header tanks, radiators and pressure caps
 - iii. heater matrix's and temperature control systems
 - iv. expansion tanks hoses, clips and pipes
 - v. thermostats impellers and coolant
 - vi. ventilation systems
- c. The preparation and method of use of appropriate specialist equipment used to evaluate system performance following component replacement
 - i. system pressure testers
 - ii. pressure cap testers
 - iii. hydrometer, or anti-freeze testing equipment
 - iv. chemical tests for the detection of combustion gas
- d. The layout and construction of internal heater systems.
- e. The controls and connections within internal heater system.
- f. Symptoms and faults associated with cooling systems:
 - i. water leaks

- ii. water in oil
- iii. internal heating system: efficiency, operation, leaks, controls, air filtration, air leaks and contamination
- iv. excessively low or high coolant temperature
- g. The procedures used when inspecting
 - i. internal heating system
 - ii. cooling system

General

- a. The preparation, testing and use of tools and equipment used for:
 - i. dismantling
 - ii. removal and replacement of engine units and components
- b. Appropriate safety precautions:
 - i. PPE
 - ii. vehicle protection when dismantling
 - iii. removal and replacing engine units and components
- c. The important of logical and systematic processes.
- d. The inspection and testing of engine units and components.
- e. The preparation of replacement units for re-fitting or replacement.
- f. The reasons why replacement components and units must meet the original specifications (OES) warranty requirements, to maintain performance and safety requirements.
- g. Refitting procedures.
- h. The inspection and testing of units and system to ensure compliance with manufacturer's, legal and performance requirements.
- The inspection and re-instatement of the vehicle following repair to ensure customer satisfaction:
 - i. cleanliness of vehicle interior and exterior
 - ii. security of components and fittings
 - iii. re-instatement of components and fittings

Unit LV02.2K – Knowledge of Light Vehicle Fuel, Ignition, Air and Exhaust System Units and Components

Content:

Fuel - Petrol

- a. The function and layout of petrol injection systems:
 - i. single and multi-point systems
 - ii. injection components
 - iii. injection pump
 - iv. pump relay
 - v. injector valve
 - vi. air flow sensor
 - vii. throttle potentiometer
 - viii. idle speed control valve
 - ix. coolant sensor
 - x. MAP and air temperature sensors
 - xi. mechanical control devices
 - xii. electronic control units
- b. The operation of single and multi-point petrol injection systems and components:
 - injection pump
 - ii. pump relay
 - iii. injector valve
 - iv. air flow sensor
 - v. throttle potentiometer
 - vi. idle speed control valve
 - vii. coolant sensor
 - viii. MAP and air temperature sensors
 - ix. electronic control units
 - x. fuel pressure regulators
 - xi. fuel pump relays
 - xii. lambda exhaust sensors
 - xiii. flywheel and camshaft sensors
 - xiv. air flow sensors (air flow meter and air mass meter)
 - xv. EGR valve
- c. The procedures used when inspecting petrol system

Fuel - Diesel

- a. The layout and construction of inline and rotary diesel systems.
- b. The principles and requirements of compression ignition engines
 - combustion chambers (direct and indirect injection)
- c. The function and operation of diesel fuel injection components:
 - i. fuel filters
 - ii. sedimenters
 - iii. injectors
 - iv. injector types (direct and indirect injection)
 - v. single
 - vi. multi-hole and pintle nozzle types
 - vii. governors
 - viii. fuel pipes
 - ix. glow plugs

- x. cold start devices
- xi. fuel cut-off solenoid
- d. The purpose and operation of:
 - i. turbochargers
 - ii. construction
 - iii. use of inter-coolers
- e Explain the procedures for injection pump timing and bleeding the system
- f The procedures used when inspecting diesel system

Fuel

- a. The meaning of terms related to:
 - i. hydro-carbon fuels
 - ii. volatility
 - iii. calorific value
 - iv. flash point
 - v. octane value
 - vi. cetane value
- b. The composition of hydro-carbon fuels:
 - i. % hydrogen and carbon in petrol and diesel fuels
- c. The composition of air (% nitrogen, oxygen), % of oxygen.
- The chemically correct air/fuel ratio for petrol engines as 14.7:1 (lambda 1, stoichiometric ratio).
- e. Weak and rich air/fuel ratios for petrol engines.
- f. Exhaust composition and by-products for chemically correct, rich and weak air/fuel ratios of petrol engines:
 - i. water vapour (H₂O)
 - ii. nitrogen (N)
 - iii. carbon monoxide (CO)
 - iv. carbon dioxide (CO₂)
 - v. carbon (C)
 - vi. hydrocarbon (HC)
 - vii. oxides of nitrogen (NOx, NO2, NO) and particulates
- g. The relative advantages and disadvantages of diesel and petrol engines.
- h. Symptoms and faults associated with fuel systems
 - diesel fuel system: air in fuel system, water in fuel, filter blockage, leaks, difficult starting, erratic running, excessive smoke (black, blue, white), engine knock, turbocharger faults
 - petrol injection system: leaks, erratic running, excessive smoke, poor starting, poor performance, poor fuel economy, failure to start, exhaust emissions, running-on, excessive fuel consumption and surging

Ignition

- a. The layout of electronic ignition systems, advantages over conventional systems (points).
- b. Electronic ignition circuits and components:
 - i. LT Circuit
 - ii. battery
 - iii. ignition switch
 - iv. electronic trigger devices
 - v. capacitor
 - vi. HT Circuit
 - vii. spark plugs (reach, heat range, electrode features and electrode polarity)
 - viii. rotor arm
 - ix. distributor (if applicable)
 - x. distributor cap
 - xi. ignition leads
 - xii. ignition coil

- xiii. ignition timing advance system
- c. The operation electronic system components:
 - i. amplifiers
 - ii. triggering systems
 - iii. inductive pick-ups
 - iv. hall generators
 - v. optical pulse generators
 - vi. control units
- d. The operation of amplifier units.
- e. Ignition terminology:
 - i. dwell angle
 - ii. dwell time
 - iii. dwell variations
 - iv. advance and retard of ignition timing
 - v. static and dynamic ignition timing
- f. The operation of electronic ignition systems under various conditions and loads to include:
 - i. engine idling
 - ii. during acceleration
 - iii. under full load
 - iv. cruising
 - v. overrun
 - vi. cold starting
- g. The principles of engine management systems:
 - i. closed loop system
 - ii. integrated ignition
 - iii. injection systems
 - iv. sensors
- h. The procedures used when inspecting
 - i. ignition system
 - ii. engine management
 - iii. sensors
- I. Symptoms and faults associated with ignition system operation
 - i. failure to start hot or cold, erratic running, poor performance, misfire, exhaust emissions misfiring and ignition noise (pinking)

Air supply and exhaust systems

- a. The construction and purpose of air filtration systems.
- b. The operating principles of air filtration systems.
- c. The construction and purpose of the exhaust systems.
- d. The operating principles of the systems.
- e. Exhaust system design to include silencers and catalytic converters.
- f. The procedures used when inspecting induction, air filtration and exhaust systems
- g. Symptoms and faults associated with air and exhaust systems
 - i. exhaust gas leaks
 - ii. air leaks

General

- j. The preparation, testing and use of tools and equipment used for:
 - iii. dismantling
 - iv. removal and replacement of engine units and components
- k. Appropriate safety precautions:
 - iv. PPE
 - v. vehicle protection when dismantling
 - vi. removal and replacing engine units and components
- I. The important of logical and systematic processes.

- m. The inspection and testing of engine units and components.
- n. The preparation of replacement units for re-fitting or replacement.
 o. The reasons why replacement components and units must meet the original specifications (OES) – warranty requirements, to maintain performance and safety requirements.
- p. Refitting procedures.
- q. The inspection and testing of units and system to ensure compliance with manufacturer's, legal and performance requirements.
- r. The inspection and re-instatement of the vehicle following repair to ensure customer satisfaction;
 - iv. cleanliness of vehicle interior and exterior
 - security of components and fittings V.
 - vi. re-instatement of components and fittings

Unit LV03K - Knowledge of Light Vehicle Electrical Units and Components

Content:

Electrical/Electronic Principles

- a. Electrical units:
 - i. volt (electrical pressure)
 - ii. ampere (electrical current)iii. ohm (electrical resistance)

 - iv. watt (power)
- b. The requirements for an electrical circuit:
 - battery i.
 - ii. cables
 - iii. switch
 - iv. current consuming device
 - continuity
- c. The direction of current flow and electron flow.
- d. Series and parallel circuits to include:
 - i. current flow
 - ii. voltage of componentsiii. volt drop

 - iv. resistance
 - v. the effect on circuit operation of open circuit component(s)
- e. Earth and insulated return systems.
- f. Cable sizes and colour codes.
- g. Different types of connectors, terminals and circuit protection devices.
- h. Common electrical and electronic symbols.

- i. The meaning of:
 - i. short circuit
 - ii. open circuit
 - iii. bad earth
 - iv. high resistance
 - v. electrical capacity
- j. The principles of vehicle electronic systems and component.
- k. Interpret vehicle wiring diagrams to include:
 - . vehicle lighting
 - ii. auxiliary circuits
 - iii. indicators
 - iv. starting and charging systems
- I. Function and construction of electrical components including:
 - i. circuit relays
 - ii. bulb types
 - iii. fan and heater
 - iv. circuit protection
- m. The safety precautions when working on electrical and electronic systems to include:
 - . disconnection and connection of battery
 - ii. avoidance of short circuits
 - iii. power surges
 - iv. prevention of electric shock
 - v. protection of electrical and electronic components
 - vi. protection of circuits from overload or damage
- n. The set-up and use of:
 - i. digital and analogue multi-meters
 - ii. voltmeter
 - iii. ammeter
 - iv. ohmmeter
 - v. oscilloscope
 - vi. manufacturer's dedicated test equipment
- o. Electrical and electronic checks for electrical and electronic systems to include:
 - i. connections
 - ii. security
 - iii. functionality
 - iv. performance to specifications
 - v. continuity, open circuit
 - vi. short circuit
 - vii. high resistance
 - viii. volt drop
 - ix. current consumption
 - x. output patterns (oscilloscope)
- p. Symptoms and faults associated with electrical and electronic systems to include:
 - i. high resistance
 - ii. loose and corroded connections
 - iii. short circuit
 - iv. excessive current consumption
 - v. open circuit
 - vi. malfunction
 - vii. poor performance
 - viii. battery faults to include flat battery
 - ix. failure to hold charge
 - x. low state of charge

- xi. overheating
- xii. poor starting

Battery and Charging

- a. The construction and operation of vehicle batteries including:
 - i. low maintenance and maintenance free
 - ii. lead acid and nickel cadmium types
 - iii. cells
 - iv. separators
 - v. plates
 - vi. electrolyte
- b. The operation of the vehicle charging system:
 - i. alternator
 - ii. rotor
 - iii. stator
 - iv. slip ring
 - v. brush assembly
 - vi. three phase output
 - vii. diode rectification pack
 - viii. voltage regulation
 - ix. phased winding connections
 - x. cooling fan
 - xi. alternator drive system

Starting

- a. The layout, construction and operation of engine starting systems: inertia and pre-engaged principles.
- b. The function and operation of the following components:
 - i. inertia and pre-engaged starter motor
 - ii. starter ring gear
 - iii. pinion
 - iv. starter solenoid
 - v. ignition/starter switch
 - vi. starter relay (if appropriate)
 - vii. one-way clutch (pre-engaged starter motor)

Lighting

- a. Function and construction of electrical components including:
 - v. front and tail lamps
 - vi. main and dip beam headlamps
 - vii. fog and spot lamps
 - viii. lighting and dip switch
 - ix. directional indicators
- b. The circuit diagram and operation of components for:
 - i. side and tail lamps
 - ii. headlamps
 - iii. interior lamps
 - iv. fog and spot lamps
 - v. direction indicators
- c. The statutory requirements for vehicle lighting when using a vehicle on the road.
- d. Headlamp adjustment and beam setting.

Auxiliary Systems

- a. Function and construction of electrical components including:
 - i. central door locking

- ii. anti theft devices
- iii. manual locking and dead lock systems
- iv. window winding
- v. demisting systems
- vi. door mirror operation mechanisms
- vii. interior lights and switching
- viii. sun roof operation
- b. The circuit diagram and operation of components for:
 - . central door locking
 - ii. anti theft devices
 - iii. manual locking and dead lock systems
 - iv. window winding
 - v. demisting systems
 - vi. door mirror operation mechanisms
 - vii. sun roof operation
- c. Comfort and convenience systems to include:
 - i. heated seats
 - ii. electrically adjusted seats
 - iii. heated screens
 - iv. electric mirrors
 - v. heating
 - vi. climate control
 - vii. air conditioning

General

- a. The preparation, testing and use of:
 - i. tools and equipment
 - ii. electrical meters and equipment used for dismantling
 - iii. removal and replacement of electrical and electronic systems and components
- b. Appropriate safety precautions:
 - i. PPE
 - ii. vehicle protection when dismantling
 - iii. removal and replacing electrical and electronic components and systems
- c. The important of logical and systematic processes.
- d. Preparation of replacement units for re-fitting or replacement electrical and electronic components and systems.
- e. The reasons why replacement components and units must meet the original specifications (OES) warranty requirements, to maintain performance, safety requirements.
- f. Refitting procedures.
- g. The inspection and testing of units and systems to ensure compliance with manufacturer's, legal and performance requirements.
- h. Inspection and re-instatement of the vehicle following repair to ensure:
 - i. customer satisfaction
 - ii. cleanliness of vehicle interior and exterior
 - iii. security of components and fittings
 - iv. re-instatement of components and fittings

Unit LV04K – Knowledge of Light Vehicle Chassis Units and Components

Content:

Steering

- a. The action and purpose of steering geometry:
 - i. castor angle
 - ii. camber angle
 - iii. kingpin or swivel pin inclination
 - iv. negative offset
 - v. wheel alignment (tracking) (toe in and toe out)
 - vi. toe out on turns
 - vii. steered wheel geometry
- b. The following terms associated with steering:
 - i. Ackerman principle
 - ii. slip angles
 - iii. self-aligning torque oversteer and understeer
 - iv. neutral steer
- c. The components and layout of hydraulic power steering systems:
 - i. piston and power cylinders
 - ii. drive belts and pumps
 - iii. hydraulic valve (rotary, spool and flapper type)
 - iv. hydraulic fluid
- d. The advantages of power assisted steering
- e. The operation of hydraulic power steering.
- f. The principles of electronic power steering systems.
- g. The procedures used for inspecting the serviceability and condition of:
 - i. manual steering
 - ii. power steering
- h. Steering system defects to include:
 - i. uneven tyre wear
 - ii. wear on outer edge of tyre
 - iii. wear on inner edge of tyre
 - iv. uneven wear
 - v. flats on tread
 - vi. steering vibrations
 - vii. wear in linkage
 - viii. damage linkage
 - ix. incorrect wheel alignment
 - x. incorrect steering geometry

Suspension

- a. The layout and components of suspension systems:
 - i. non-independent suspensions
 - ii. independent front suspension (IFS)
 - iii. independent rear suspension (IRS)
 - iv. hydraulic
 - v. hydro-pneumatic
 - vi. rigid axle types
- b. The operation of suspension systems and components:

- i. leaf and coil springs
- ii. torsion bar
- iii. rubber springs
- iv. Macpherson strut system
- v. hydraulic
- vi. hydro-pneumatic
- vii. hydraulic dampers
- viii. trailing arms
- ix. wish bones
- x. ball joints
- xi. track control arms
- xii. bump stops
- xiii. anti-roll bars
- xiv. stabiliser bars
- xv. swinging arms
- xvi. parallel link
- xvii. swinging half-axles
- xviii.transverse link
- xix. semi-swinging arms
- c. The advantages of different systems including:
 - i. non-independent
 - ii. independent suspension (IFS)
 - iii. independent suspension (IRS)
 - iv. hydraulic
 - v. hydro-pneumatic
 - vi. rigid axle
- d. The principles of electronic suspensions systems.
- e. The forces acting on suspension systems during braking, driving and cornering.
- f. The methods of locating the road wheels against braking, driving and cornering forces.
- g. The methods of controlling cornering forces by fitting anti-roll torsion members
- h. Suspension terms:
 - i. rebound
 - ii. bump
 - iii. float
 - iv. dive
 - v. pitch
 - vi. roll
 - vii. compliance
- i. The procedures used for inspecting the serviceability and condition of the suspension system
- j. Suspension system defects:
 - i. wheel hop
 - ii. ride height (unequal and low)
 - iii. wear
 - iv. noises under operation
 - v. fluid leakage
 - vi. excessive travel
 - vii. excessive tyre wear
 - viii. bounce
 - ix. poor vehicle handling
 - x. worn dampers
 - xi. worn joints
 - xii. damaged linkages

Brakes

- a. The construction and operation of drum brakes:
 - i. leading and trailing shoe construction
 - ii. self-servo action
 - iii. automatic adjusters
 - iv. backing plates
 - v. parking brake system
- b. The construction and operation of disc brakes:
 - i. disc pads
 - ii. calliper
 - iii. brake disc
 - iv. ventilated disc
 - v. disc pad retraction
 - vi. parking brake system
 - vii. electrical and electronic components
 - viii. wear indicators and warning lamps
- c. The construction and operation of the hydraulic braking system:
 - i. single and dual line layout
 - ii. master cylinders
 - iii. wheel cylinders
 - iv. disc brake calliper & pistons
 - v. brake pipe
 - vi. brake servo
 - vii. warning lights
 - viii. parking brakes
 - ix. equalising valves
- d. The principles and components of electronic ABS systems, electrical and electronic components.
- e. The requirements and hazards of brake fluid:
 - i. boiling point
 - ii. hygroscopic action
 - iii. manufacturer's change periods
 - iv. fluid classification and rating
 - v. potential to damage paint surfaces
- f. Terms associated with mechanical and hydraulic braking systems:
 - i. braking efficiency
 - ii. brake fade
 - iii. brake balance
 - iv. ABS
- g. The procedures used for inspecting the serviceability and condition of the braking system
- h. Braking system defects:
 - i. worn shoes or pads
 - ii. worn or scored brake surfaces
 - iii. abnormal brake noises
 - iv. brake judder
 - v. fluid contamination of brake surfaces
 - vi. fluid leaks
 - vii. pulling to one side
 - viii. poor braking efficiency
 - ix. lack of servo assistance
 - x. brake drag
 - xi. brake grab

xii. brake fade

Wheel and Tyres

- a. The construction of different types of tyre:
 - i. radial
 - ii. cross ply
 - iii. bias belted
 - iv. tread patterns
 - v. tyre mixing regulations
 - vi. tyre applications
- b. Tyre markings:
 - i. tyre and wheel size markings
 - ii. speed rating
 - iii. direction of rotation
 - iv. profile
 - v. load rating
 - vi. ply rating
 - vii. tread-wear indicators
- c. Wheel construction:
 - i. light alloy
 - ii. pressed steel and wire wheels
 - iii. flat-edge and double hump rims
- d. Types of wheel bearing arrangements:
 - i. non-driving
- e. Types of bearing used for wheel bearing arrangements:
 - i. roller
 - ii. taper roller
 - iii. needle
 - iv. ball and plain
- f. The procedures used for inspecting the serviceability and condition of:
 - iii. tyres & wheels
 - iv. bearings
- g. The defects associated with tyres and wheels:
 - i. abnormal tyre wear
 - ii. cuts
 - iii. side wall damage
 - iv. wheel vibrations
 - v. tyre noise (squeal during cornering)
 - vi. tyre over heating (low pressure)
 - vii. tread separation

General

The procedures for dismantling, removal and replacement of chassis system components

- a. The preparation:
 - i. testing and use of tools and equipment
 - ii. electrical meters and equipment used for dismantling
 - iii. removing and replacing chassis systems and components
- b. Appropriate safety precautions:
 - i. PPE
 - ii. vehicle protection when dismantling
 - iii. removing and replacing chassis systems and components
- c. The important of logical and systematic processes.
- d. The inspection and testing of chassis systems and components.

- e. The preparation of replacement units for re-fitting or replacement of chassis systems or components.
- f. Identify the reasons why replacement components and units must meet the original specifications (OES):
 - i. warranty requirements
 - ii. to maintain performance
 - iii. safety requirements
- g. Refitting procedures.
- h. The inspection and testing of units and systems to ensure compliance with manufacturer's, legal and performance requirements.
- i. The inspection and re-instatement of the vehicle following repair to ensure customer satisfaction:
 - i. cleanliness of vehicle interior and exterior
 - ii. security of components and fittings
 - iii. re-instatement of components and fittings

Unit LV0506K – Knowledge of Inspecting Light Vehicles Using Prescribed Methods

Content:

Pre and post work vehicle inspections and record findings

- a. PPE and vehicle protection relating to:
 - i. vehicle body panels
 - ii. paint surfaces
 - iii. seats
 - iv. carpets and floor mats prior to conduction vehicle inspections
- b. Pre and post work vehicle inspection procedures:
 - i. aural
 - ii. visual and functional assessments on engine
 - iii. engine systems
 - iv. chassis systems
 - v. wheels and tyres
 - vi. transmission system
 - vii. electrical and electronic systems
 - viii. exterior vehicle body
 - ix. vehicle interior
- c. The methods for carrying out inspections for: damage, corrosion, fluid leaks, wear, security, mounting security and condition to include:
 - i. engines and engine systems
 - ii. chassis systems
 - iii. brakes
 - iv. steering
 - v. suspension
 - vi. wheels
 - vii. tyres
 - viii. body panels
 - ix. electrical and electronic systems and components
 - x. vehicle seating and vehicle interior
 - xi. vehicle instrumentation
 - xii. driver controls
- d. Check conformity to manufacturer's specifications and legal requirements.
- e. Completion of documentation to include:
 - i. inspection records
 - ii. job cards
 - iii. vehicle records
- f. Make recommendations based on results of vehicle inspections.
- g. The checks necessary to ensure customer satisfaction for:
 - i. vehicle body panels
 - ii. paint surfaces
 - iii seats
 - iv. carpets and floor mats following pre or post vehicle inspections
- h. Prepare and use appropriate inspection equipment and tools.
- i. Inspection procedures following inspection checklists.

Unit LV07K – Knowledge of Diagnosis and Rectification of Light Vehicle Engine Faults

Content:

Single and Multi-Point Petrol Injection Systems

- a. The operation and construction of single and multi-point injection systems including:
 - i. types of air flow sensor
 - ii. fuel supply system
 - iii. fuel pump
 - iv. filter
 - v. fuel regulator
 - vi. injectors
 - vii. sequential injection
 - viii. continuous injection
 - ix. semi-continuous injection
 - x. electronic control unit (ECU)
 - xi. injector pulse width
 - xii. sensors
- b. The operation of each system under various operating conditions including:
 - i. cold starting
 - ii. warm up
 - iii. hot starting
 - iv. acceleration
 - v. deceleration
 - vi. cruising
 - vii. full load
- c. Engine speed limiting and knock sensing.

Engine Management

- a. The function and purpose of engine management systems.
- b. The difference between analogue, digital, programmable and non-programmable systems.
- c. Open loop and closed loop control, types of input and output devices.
- d. The function and operation of digital components and systems.
- e. The operation of engine management systems under various conditions.

Valve Mechanisms

- a. The reasons for variable valve timing and multi-valve arrangements and the effect on performance.
- b. Layout of multi-valve arrangements, components, operation and drive arrangements.
- c. Construction features and operation of variable valve timing engines and electronic control.

Pressure Charged Induction Systems

- a. The meaning of volumetric efficiency; explain the effect of volumetric efficiency on engine performance, torque and power.
- b. The methods used to improve volumetric efficiency:
 - i. variable valve timing
 - ii. turbo-charging
 - iii. supercharging
 - iv. intercoolers
- c. The operation of turbo-chargers and the purpose of:

- i. turbo-charging
- ii. supercharging
- iii. intercoolers
- iv. waste gates
- v. exhaust gas recirculation
- d. Advantages and disadvantages of pressure charging induction systems.

Terms Associated with Combustion

- a. Flame travel, pre-ignition and detonation.
- b. Fuel properties:
 - i. octane rating
 - ii. flash point
 - iii. fire point
 - iv. volatility
 - v. composition of petrol and diesel fuels
 - vi. hydro-carbon content
- c. Composition of carbon fuels (petrol and diesel):
 - i. % hydrogen and carbon
 - ii. composition of air
 - iii. % oxygen
 - iv. % nitrogen
- d. Combustion process for spark ignition and compression ignition engines:
 - i. air fuel ratio
 - ii. lambda ratio
 - iii. stoichiometric ratio
- e. The by-products of combustion for different engine conditions and fuel mixtures:
 - i. CO
 - ii. CO₂
 - iii. O
 - iv. N
 - v. H₂O
 - vi. NOx
- f. Describe the legal requirements for exhaust emissions;
 - i. MOT requirements
 - ii. EURO 3
 - iii. 4 & 5 regulations

Assessment, Repair and Restoration of Mechanical Engine Components

- a. How engine mechanical components are assessed and measured for wear and serviceability:
 - i. cylinder bores
 - ii. cylinder heads
 - iii. crankshaft journals
 - iv. valve faces
 - v. valve guides
 - vi. valve seats
 - vii. camshafts
- b The methods used for the repair and restoration of engine components.

Cooling, Heating and Ventilation

- a. The components, operating principles, and functions of engine cooling systems
- b. Procedures used to remove, replace and adjust cooling system components
 - i. cooling fans and control devices
 - ii. header tanks, radiators and pressure caps
 - iii. heater matrix's and temperature control systems
 - iv. expansion tanks hoses, clips and pipes

- v. thermostats impellers and coolant
- vi. ventilation systems
- c. The preparation and method of use of appropriate specialist equipment used to evaluate system performance following component replacement
 - i. system pressure testers
 - ii. pressure cap testers
 - iii. hydrometer, or anti-freeze testing equipment
 - iv. chemical tests for the detection of combustion gas
- d. The layout and construction of internal heater systems.
- e. The controls and connections within internal heater system.
- f. Symptoms and faults associated with cooling systems:
 - i. water leaks
 - ii. water in oil
 - iii. internal heating system: efficiency, operation, leaks, controls, air filtration, air leaks and contamination
 - iv. excessively low or high coolant temperature
- g. The procedures used when inspecting
 - i. internal heating system
 - ii. cooling system

Air Conditioning Systems

- a. The operation of air conditioning components including:
 - i. compressors
 - ii. condensers
 - iii. receivers
 - iv. dryers
 - v. connections
 - vi. valves
 - vii. hoses
 - viii. thermostats
 - ix. refrigerants
- b The layout and operation of air conditioning systems.

Climate Control Systems

- a. Identify components used in climate control systems including:
 - i. sensors
 - ii. speed controls
 - iii. control systems
 - iv. servomotors
 - v. electronic components
- b. The layout of climate control systems.
- c. The operation of climate control system.

Symptoms and Faults in Engine Mechanical Systems and Components

- a. Symptoms and faults related to:
 - i. worn cylinders
 - ii. cylinder liners
 - iii. pistons
 - iv. piston rings
 - v. crankshaft
 - vi. camshaft
 - vii. bearings
 - viii. cylinder head and gasket
 - ix. valves

- x. valve seats and valve guides
- xi. cambelts
- xii. lubrication system and components
- xiii. oil pump
- xiv. relief valve
- xv. filter
- xvi. turbo-charger
- xvii. supercharger

Diagnosis of Faults in Engine Mechanical Systems and Components

- a. Interpret information for:
 - i. diagnostic tests
 - ii. manufacturer's vehicle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. legal requirements
- b. The preparation of tools and equipment for use in diagnostic testing and assessment.
- c. Systematic assessment, testing and inspection of engine components and systems including:
 - i. mechanical system & component condition
 - ii. engine balance
 - iii. power balance
 - iv. performance and operation
 - v. wear
 - vi. run out
 - vii. alignment
- d. Use of appropriate tools and equipment including:
 - i. compression gauges
 - ii. leakage testers
 - iii. cylinder balance tester
 - iv. pressure gauges
 - v. micrometers
 - vi. vernier gauges
- e. Evaluate and interpret test results from diagnostic testing.
- f. Compare test result and values with vehicle manufacturer's specifications and settings.
- g. The procedures for dismantling, components and systems and the use of appropriate equipment and procedures.
- h. Assess, examine and measure components including:
 - i. settings
 - ii. values
 - iii. condition
 - iv. wear and performance of components and systems
- i. Probable faults
 - i. malfunctions
 - ii. incorrect settings
 - iii. wear
- j. Rectification or replacement procedures.

Evaluate operation of components and systems following diagnosis and repair to confirm system performance.

Faults and Symptoms in Ignition Systems

- a. Ignition system failure or malfunctions including:
 - i. no spark
 - ii. misfiring
 - iii. backfiring

- iv. cold or hot starting problems
- v. poor performance
- vi. pre-ignition
- vii. detonation
- viii. exhaust emission levels
- ix. fuel consumption
- x. low power
- xi. unstable idle speed

Faults and Symptoms in Electronic Petrol and Diesel Injection Systems

- a. Petrol and diesel injection system failures or malfunctions including:
 - i. cold or hot starting problems
 - ii. poor performance
 - iii. exhaust emissions
 - iv. high fuel consumption
 - v. erratic running
 - vi. low power
 - vii. unstable idle speed

Faults and Symptoms in Engine Management Systems

- a. Engine management system failure or malfunctions including:
 - i. misfiring
 - ii. backfiring
 - iii. cold or hot starting problems
 - iv. poor performance
 - v. pre-ignition
 - vi. detonation
 - vii. exhaust emission levels
 - viii. fuel consumption
 - ix. low power
 - x. unstable idle speed

Diagnosis of Faults in Electronic Ignition, Petrol and Diesel Injection and Engine Management Systems

- a. Locate and interpret information for:
 - i. diagnostic tests
 - ii. manufacturer's vehicle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. fault codes
 - vii. legal requirements
- b. The preparation of tools and equipment for use in diagnostic testing and assessment.
- c. Conduct systematic assessment, testing of engine systems including:
 - i. component condition and performance
 - ii. component settings
 - iii. component values
 - iv. electrical and electronic values
 - v. system performance and operation
 - vi. use of appropriate tools and equipment including gauges
 - vii. multi-meter
 - viii. breakout box
 - ix. oscilloscope
 - x. diagnostic tester
 - xi. manufacturer's dedicated equipment

- xii. exhaust gas analyser
- xiii. fuel flow meter
- xiv. pressure gauges
- d. Evaluate and interpret test results from diagnostic testing.
- e. Compare test result, values and fault codes with vehicle manufacturer's specifications and settinas.
- f. The procedures for dismantling, components and systems using appropriate equipment.
- g. Assess, examine and measure components including:
 - settings
 - input and output values ii.
 - iii. voltages
 - iv. current consumption
 - v. resistance
 - vi. output patterns with oscilloscope
 - vii. condition
 - viii. wear and performance of components and systems
- h. Identify probable faults and indications of:
 - faults i.
 - ii. malfunctions
 - iii. incorrect settings
 - iv. wear
 - v. values
 - vi. inputs and outputs
 - vii. fault codes
- Rectification or replacement procedures.
- Evaluation and the operation of components and systems following diagnosis and repair to confirm system performance.

Faults and Symptoms in Vehicle Comfort Systems

- a. System failure, malfunction or ineffectiveness of internal heating system, air conditioning system or climatic control system including:
 - i. leaks
 - ii. abnormal noise
 - iii. ineffective operation
 - iv. failure to operate

 - v. control faults
 vi. inadequate operation

Diagnosis of Faults in Vehicle Comfort Systems

- a. Locate and interpret information for:
 - i. diagnostic tests
 - ii. manufacturer's vehicle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. fault codes
 - vii. legal requirements
- b. The preparation of tools and equipment for use in diagnostic testing and assessment.
- Conduct systematic assessment and testing of comfort systems including:
 - component condition and performance
 - ii. component settings
 - iii. component values
 - iv. electrical and electronic values
 - system performance and operation
 - vi. drive belts
 - vii. controls

- viii. compressors
- ix. condensers
- x. receivers
- xi. dryers
- xii. connections
- xiii. valve
- xiv. hoses
- xv. thermostats and refrigerants
- xvi. sensors
- xvii. speed controls
- xviii.control systems
- xix. servomotors
- d. Use of appropriate tools and equipment including:
 - i. pressure gauges
 - ii. multi-meter
 - iii. breakout box
 - iv. oscilloscope
 - v. diagnostic tester
 - vi. manufacturer's dedicated equipment
 - vii. flow meter
- e. Evaluate and interpret test results from diagnostic testing.
- f. Compare test result, values and fault codes with vehicle manufacturer's specifications and settings
- g. How to dismantle, components and systems using appropriate equipment and procedures
- h. How to assess, examine and measure components including: settings, input and output values, voltages, current consumption, resistance, output patterns with oscilloscope, pressures, condition, wear and performance of components and systems
- i. Identification of probable faults and indications of faults, malfunctions, incorrect settings, wear, values, inputs and outputs, fault codes, pressures and leaks
- j. Rectification or replacement procedures
- k. Evaluation and operation of components and systems following diagnosis and repair to confirm system performance

Unit LV08K – Knowledge in Diagnosis and Rectification of Light Vehicle Chassis Faults

Content:

Electrical and electronic principles of light vehicle chassis systems

- The operation of electrical and electronic systems and components related to light vehicle chassis systems including:
 - i. ECU
 - ii. sensors and actuators
 - iii. electrical inputs
 - iv. voltages
 - v. oscilloscope patterns
 - vi. digital and fibre optic principles
- The interaction between the electrical/electronic system and mechanical components of chassis systems.
- c. Electronic and electrical safety procedures.

Operation of electronic ABS and EBD braking systems

- a. Layout of:
 - i. ABS and EBD braking systems
 - ii. anti-lock braking
 - iii. anti-skid control systems
 - iv. warning systems
- b. Operation of:
 - hydraulic and electronic control units
 - ii. wheel speed sensors
 - iii load sensors
 - iii. hoses
 - iv. cables and connectors
- c. Advantage of ABS and EBD braking systems over conventional braking systems.
- The relationship and interaction of ABS braking with and other vehicle systems traction control.

Steering geometry for light vehicle applications

- a. Non-steered wheel geometry settings.
- b. Front/rear wheel geometry:
 - i. castor
 - ii. camber
 - iii. kingpin or swivel pin inclination
 - iv. negative offset
 - v. wheel alignment (tracking)
 - vi. toe in and toe out
 - vii. toe out on turns and steered wheel geometry
 - viii. Ackerman principle
 - ix. slip angles
 - x. self-aligning torque
 - xi. oversteer and understeer
 - xii. neutral steer
- c. The operation and layout of rear and four wheel steering.
- d. The construction and operation of power assisted steering systems:

- i. hydraulic system
- ii. power cylinders
- iii. drive belts and pumps
- iv. hydraulic valve (rotary, spool and flapper type)
- e. The operation of:
 - i. electronic power steering systems (EPS)
 - ii. electrical and electronic components

Components and operation of self-levelling suspension

- a. The components, construction and operation of a self levelling suspension system.
- b. The operation of self -levelling suspension system under various conditions:
 - i. self-energising
 - ii. pump operated self-levelling suspension

Operation of fitting ride-controlled systems.

- a. The reasons for fitting ride controlled systems.
- b. The operation of driver controlled and ride controlled systems.

Symptoms and faults in braking systems

- Symptoms and faults associated with conventional braking systems, ABS, and EBD systems:
 - i. mechanical
 - ii. hydraulic
 - iii. electrical and electronic systems
 - iv. fluid leaks
 - v. warning light operation
 - vi. poor brake efficiency
 - vii. wheel locking under braking

Diagnosis and faults in braking systems

- a. Locate and interpret information for:
 - i. diagnostic tests
 - ii. vehicle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. fault codes
 - vii. legal requirements
- b. Prepare equipment for use in diagnostic testing.
- c. Conduct systematic testing and inspection of:
 - i. braking system
 - ii. ABS
 - iii. EBD
 - iv. mechanical
 - v. hydraulic
 - vi. electrical and electronic systems
- d. Using appropriate tools and equipment including:
 - i. multi-meters
 - ii. oscilloscope
 - iii. pressure gauges
- e. Evaluate and interpret test results from diagnostic testing.
- f. Compare test result and values with vehicle manufacturer's specifications and settings.
- g. How to dismantle, components and systems using appropriate equipment and procedures.
- h. Assess, examine and evaluate the operation, settings, values, condition and performance of components and systems.
- i. Probable faults, malfunctions, incorrect settings.

- j. Rectification or replacement procedures.
- k. Operation of systems following diagnosis and repair to confirm operation and performance.

Symptoms and faults associated with steering systems

- a. Symptoms and faults associated with steering systems:
 - i. mechanical
 - ii. hydraulic
 - iii. electrical and electronic
 - iv. steering boxes (rack and pinion, worm and re-circulating ball)
 - v. steering arms and linkages
 - vi. steering joints and bushes
 - vii. idler gears
 - viii. bearings
 - ix. steering columns (collapsible and absorbing)
 - x. power steering system

Diagnosis and faults in steering systems

- a. Locate and interpret information for:
 - i. diagnostic tests
 - ii. vehicle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. fault codes
 - vii. legal requirements
- b. How to prepare equipment for use in diagnostic testing.
- c. Conduct systematic testing and inspection of:
 - i. steering systems
 - ii. mechanical
 - iii. hydraulic
 - iv. electrical and electronic systems
 - v. power steering system
- d. Using appropriate tools and equipment including:
 - i. multi-meters
 - ii. oscilloscope
 - iii. pressure gauges
 - iv. wheel alignment equipment
 - v. steering geometry equipment
- e. Evaluate and interpret test results from diagnostic testing.
- f. Compare test result and values with vehicle manufacturer's specifications and settings.
- g. How to dismantle, components and systems using appropriate equipment and procedures.
- h. Assess, examine and evaluate the:
 - i. operation
 - ii. settings
 - iii. values
 - iv. condition and performance of components and systems
- i. Probable faults, malfunctions, and incorrect settings.
- i. Rectification or replacement procedures.
- k. Operation of systems following diagnosis and repair to confirm operation and performance.

Symptoms and faults associated with suspension systems

- a. Symptoms and faults associated with suspension systems:
 - i. mechanical
 - ii. hvdraulic
 - iii. electrical and electronic

- iv. conventional
- v. self-levelling and ride controlled suspension systems
- vi. ride height (unequal and low)
- vii. wear
- viii. noises under operation
- ix. fluid leakage
- x. excessive travel
- xi. excessive tyre wear

Diagnosis and faults in suspension systems

- a. Locate and interpret information for:
 - i. diagnostic tests
 - ii. vehicle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. fault codes
 - vii. legal requirements
- b. How to prepare equipment for use in diagnostic testing.
- c. How to conduct systematic testing and inspection of:
 - i. suspension systems
 - ii. mechanical
 - iii. hydraulic
 - iv. electrical and electronic systems
 - v. conventional
 - vi. self-levelling and ride controlled suspension systems
- d. Using appropriate tools and equipment including:
 - i. multi-meters
 - ii. oscilloscope
 - iii. pressure gauges
 - iv. alignment equipment
 - v. geometry equipment
- e. Evaluate and interpret test results from diagnostic testing.
- f. Compare test result and values with vehicle manufacturer's specifications and settings.
- g. How to dismantle, components and systems using appropriate equipment and procedures.
- h. Assess, examine and evaluate the operation, settings, values, condition and performance of components and systems.
- i. Probable faults, malfunctions and incorrect settings.
- j. Rectification or replacement procedures.
- k. Operation of systems following diagnosis and repair to confirm operation and performance.

Measurements on components to include:

- a. settings
- b. input and output values
- c. voltages
- d. current consumption
- e. resistance
- f. output patterns with oscilloscope
- g. pressures
- h. condition
- i. wear and performance

Unit LV11.1K – Knowledge of Overhauling Light Vehicle Engine Units

Content:

How the units and assemblies being overhauled operate

- a. Identify unit components
- b. Understand unit construction
- c. Describe unit operation

How units are dismantled and reassembled

- a. The dismantling procedure.
- b. Tools and equipment used for stripping and rebuilding units and assemblies.
- c. Methods of safe storage for removed components during overhaul activities.
- d. The process for assessing the condition of sub-assemblies including:
 - fit
 - ii. tolerances
 - iii. permitted limits
- e. The rebuild procedure for units and assemblies.
- f. Adjustment procedures during re-assembly.

Unit and assembly testing and evaluation procedures

- a. Appropriate testing and evaluation procedures prior to dismantling units.
- b. Appropriate testing and evaluation procedures of components after dismantling units.
- c. How to use overhauling and test equipment for the task.
- The cost-benefit relationship between reconditioning, repair and replacement of components within units.
- e. How to test and evaluate the performance of the overhauled units against the operating specification.
- f. How to interpret test results.
- g. Adjustment procedures during final evaluation.

Faults associated with units and assemblies being overhauled

- a. Causes of faults and failures within units and assemblies.
- b. The faults associated with units and assemblies.
- How to make adjustments to meet final specification after testing and evaluation of assembled units and assemblies.

The procedures for dismantling, removal and replacement of units and components

- a. The preparation, testing and use of:
 - i. tools and equipment
 - ii. removal and replacement of electrical and electronic systems and components
- b. Appropriate safety precautions:
 - i. PPE
 - ii. vehicle protection when dismantling
 - iii. removal and replacing electrical and electronic components and systems
- c. The importance of logical and systematic processes.
- d. The reasons why replacement components and units must meet the original specifications (OES) warranty requirements, to maintain performance, safety requirements.
- e. Refitting procedures.

- f. The inspection and testing of units and systems to ensure compliance with manufacturer's, legal and performance requirements.
- g. Inspection and re-instatement of the vehicle following repair to ensure:
 - i. customer satisfaction
 - ii. cleanliness of vehicle interior and exterior
 - iii. security of components and fittings
 - iv. re-instatement of components and fittings
 - v. cancelling of any fault codes and warning lights

Unit LV11.2K – Knowledge of Overhauling Light Vehicle Transmission Units

Content:

How the units and assemblies being overhauled operate

- a. Identify unit components
- b. Understand unit construction
- c. Describe unit operation

How units are dismantled and reassembled

- a. The dismantling procedure.
- b. Tools and equipment used for stripping and rebuilding units and assemblies.
- c. Methods of safe storage for removed components during overhaul activities.
- d. The process for assessing the condition of sub-assemblies including:
 - i. fit
 - ii. tolerances
 - iii. permitted limits
- e. The rebuild procedure for units and assemblies.
- f. Adjustment procedures during re-assembly.

Unit and assembly testing and evaluation procedures

- a. Appropriate testing and evaluation procedures prior to dismantling units.
- b. Appropriate testing and evaluation procedures of components after dismantling units.
- c. How to use overhauling and test equipment for the task.
- The cost-benefit relationship between reconditioning, repair and replacement of components within units.
- e. How to test and evaluate the performance of the overhauled units against the operating specification.
- f. How to interpret test results.
- g. Adjustment procedures during final evaluation.

Faults associated with units and assemblies being overhauled

- a. Causes of faults and failures within units and assemblies.
- b. The faults associated with units and assemblies.
- How to make adjustments to meet final specification after testing and evaluation of assembled units and assemblies.

The procedures for dismantling, removal and replacement of units and components

- a. The preparation, testing and use of:
 - i. tools and equipment
 - ii. removal and replacement of electrical and electronic systems and components
- b. Appropriate safety precautions:
 - i. PPE
 - ii. vehicle protection when dismantling
 - iii. removal and replacing electrical and electronic components and systems
- c. The importance of logical and systematic processes.
- d. Preparation of replacement units for re-fitting or replacement electrical and electronic components and systems.
- e. The reasons why replacement components and units must meet the original specifications (OES) warranty requirements, to maintain performance, safety requirements.

- f. Refitting procedures.
- g. The inspection and testing of units and systems to ensure compliance with manufacturer's, legal and performance requirements.
- h. Inspection and re-instatement of the vehicle following repair to ensure:
 - customer satisfaction
 - ii. cleanliness of vehicle interior and exterior
 - iii. security of components and fittings

 - iv. re-instatement of components and fittings
 v. cancelling of any fault codes and warning lights

Unit LV11.3K – Knowledge of Overhauling Light Vehicle Steering and Suspension Units

Content:

How the units and assemblies being overhauled operate

- a. Identify unit components
- b. Understand unit construction
- c. Describe unit operation

How units are dismantled and reassembled

- a. The dismantling procedure.
- b. Tools and equipment used for stripping and rebuilding units and assemblies.
- c. Methods of safe storage for removed components during overhaul activities.
- d. The process for assessing the condition of sub-assemblies including:
 - i. fit
 - ii. tolerances
 - iii. permitted limits
- e. The rebuild procedure for units and assemblies.
- f. Adjustment procedures during re-assembly.

Unit and assembly testing and evaluation procedures

- a. Appropriate testing and evaluation procedures prior to dismantling units.
- b. Appropriate testing and evaluation procedures of components after dismantling units.
- c. How to use overhauling and test equipment for the task.
- The cost-benefit relationship between reconditioning, repair and replacement of components within units.
- e. How to test and evaluate the performance of the overhauled units against the operating specification.
- f. How to interpret test results.
- g. Adjustment procedures during final evaluation.

Faults associated with units and assemblies being overhauled

- a. Causes of faults and failures within units and assemblies.
- b. The faults associated with units and assemblies.
- How to make adjustments to meet final specification after testing and evaluation of assembled units and assemblies.

The procedures for dismantling, removal and replacement of electrical and electronic units and components

- a. The preparation, testing and use of:
 - i. tools and equipment
 - ii. removal and replacement of electrical and electronic systems and components
- b. Appropriate safety precautions:
 - i. PPE
 - ii. vehicle protection when dismantling
 - iii. removal and replacing electrical and electronic components and systems
- c. The importance of logical and systematic processes.
- d. Preparation of replacement units for re-fitting or replacement electrical and electronic components and systems.

- e. The reasons why replacement components and units must meet the original specifications (OES) warranty requirements, to maintain performance, safety requirements.
- f. Refitting procedures.
- g. The inspection and testing of units and systems to ensure compliance with manufacturer's, legal and performance requirements.
- h. Inspection and re-instatement of the vehicle following repair to ensure:
 - i. customer satisfaction
 - ii. cleanliness of vehicle interior and exterior
 - iii. security of components and fittings
 - iv. re-instatement of components and fittings
 - v. cancelling of any fault codes and warning lights

Unit LV12K – Knowledge of Light Vehicle Transmission and Driveline Units and Components

Content:

The operation of clutch operating systems

- a. Clutch operating mechanisms
 - i. pedal and lever
 - ii. hydraulic operated
 - iii. mechanical
 - iv. cable operated
 - v. hydraulic components
 - vi. master cylinder
 - vii. slave cylinder
 - viii. hydraulic pipes
 - ix. electrical and electronic components (fluid level indicators)

The operation of friction clutches

- a. The reasons for fitting a clutch.
- b. The construction and operation of:
 - i. hydraulically and cable operated clutches
 - ii. coil spring clutches
 - iii. diaphragm spring clutches
 - iv. single plate clutches
 - v. multi plate clutches

The operation of manual gearboxes

- a. The reasons for fitting gearboxes, to provide neutral, reverse, torque multiplication.
- b. Different gearbox types: transverse and inline layouts.
- The layout and construction of gears and shafts for 4, 5 and 6 speed gearbox designs, sliding
 mesh, constant mesh and synchromesh gearboxes reverse gear,
- d. The construction and operation of:
 - i. gear selection linkages
 - i. selector forks and rods
 - iii. detents and interlock mechanisms
- e. The construction and operation of synchromesh devices.
- f. The arrangements for gearbox bearings:
 - i. bushes
 - ii. oil seals
 - iii. gaskets and gearbox lubrication
 - iv. speedometer drive
- g. The electrical and electronic components including reverse lamp switch
- h. Calculate gear ratios and driving torque for typical gearbox specifications.

The operation of driveline components

- a. The layout and construction of propshafts and drive shafts used in front wheel, rear wheel and four-wheel drive systems.
- b. The reasons for using flexible couplings and sliding joints in transmissions systems.
- The reason for using constant velocity joints in drive shafts incorporating steering mechanisms.
- d. The construction and operation of:

- i. universal joints
- ii. sliding couplings
- iii. constant velocity joints
- e. The simple stresses applied to shafts: torsional, bending and shear.
- f. The construction and operation of:
 - i. final drive units
 - ii. crown wheel & pinion
 - iii. bevel
 - iv. hypoid and helical gears
 - v. differential gears
 - vi. sun & planet gears
 - vii. lubricants
 - viii. lubrication bearings and seals
 - ix. limited slip differential
- g. The reasons for fitting a differential.
- h. Calculate final drive gear ratios.
- i. Calculate the overall gear ratio from given data (gearbox ratio x final drive ratio).

The testing and inspection techniques used for light vehicle transmission systems

- The techniques and procedures used for inspecting and testing clutches and clutch mechanisms including:
 - i. clearances
 - ii. pedal and lever settings
 - iii. cables & linkages
 - iv. hydraulic system
 - v. leaks
 - vi. adjustments
 - vii. travel
- b. The techniques and procedures used for inspecting and testing gearboxes including:
 - i. leaks
 - ii. gear selection
 - iii. synchromesh operation
 - iv. abnormal noise
- c. The techniques and procedures used for inspecting and testing drive line systems (prop & drive shafts, couplings) including:
 - i. security
 - ii. serviceability of rubber boots
 - iii. leaks
 - iv. alignment
 - v. balance weights (where applicable)
- d. The techniques used when inspecting and testing final drive systems including:
 - i. fluid levels
 - ii. leaks
 - iii. noise

The faults and symptoms associated with vehicle transmissions systems

- a. The faults and symptoms associated with transmission systems:
 - i. clutch faults
 - ii. gearbox faults
 - iii. drive line faults (propshaft, drive shaft
 - iv. universal and constant velocity joints)
 - v. universal joint alignment
 - vi. final drive faults
- b. Faults and symptoms to include mechanical, electrical and hydraulic systems.

The procedures for dismantling, removal and replacement of transmission units and components

- The preparation, testing and use of tools and equipment, electrical meters and equipment used for
 - dismantling removing and replacing transmission systems and components.
- b. appropriate safety precautions:
 - i. PPE
 - ii. vehicle protection when dismantling
 - iii. removing and replacing transmission systems and components
- c. The importance of logical and systematic processes.
- d. The inspection and testing of transmission systems and components
- e. The preparation of replacement units for re-fitting or replacement of transmission systems or components.
- f. The reasons why replacement components and units must meet the original specifications (OES):
 - i. warranty requirements
 - ii. to maintain performance
 - iii. safety requirements
- g. Refitting procedures.
- i. The inspection and testing of units and system to ensure compliance with manufacturer's, legal and performance requirements.
- j. The inspection and re-instatement of the vehicle following repair to ensure customer satisfaction:
 - i. cleanliness of vehicle interior and exterior
 - ii. security of components and fittings
- h. re-instatement of components and fittings

Types of wheel bearing arrangements:

- i. driven wheels
- ii. fully floating
- iii. three quarter floating
- iv. semi floating axles

Unit LV13K – Knowledge of Diagnosis and Rectification of Light Vehicle Transmission and Driveline Faults

Content:

Electrical and electronic principles related to light vehicle transmission systems

- The operation of electrical and electronic systems and components related to light vehicle transmission systems including:
 - i. ECU
 - ii. sensors and actuators
 - iii. electrical inputs & outputs
 - iv. voltages
 - v. oscilloscope patterns
 - vi. digital and fibre optic principles
- b. The interaction between the electrical/electronic system, hydraulic system and mechanical components of the transmission systems.
- c. Electronic and electrical safety procedures.

The operation light vehicle clutches and fluid couplings

- a. The construction and operation of friction clutches (coil spring, diaphragm) including single and twin clutch designs.
- b. The construction and operation of fluid couplings including:
 - i. fluid flywheel
 - ii. torque converter (torque multiplication, efficiency)
 - iii. benefits of fluid couplings
 - iv. benefits of torque converter over fluid flywheel

The operation of light vehicle transmissions and driveline systems

- a. The construction and operation of manual gearboxes:
 - i. 4, 5 & 6 speed gearboxes
 - ii. gear arrangements
 - iii. shaft and bearing arrangements
 - iv. synchromesh devices
 - v. interlock mechanisms
 - vi. linkages
 - vii. overdrive
 - viii. lubrication
- b. The construction and operation of automatic gearboxes including hydraulic and electronic control systems: operations of epicyclic gears (sun, planet, annulus and carrier), method for achieving different gear ratios using epicyclic gearing; hydraulic control systems, components and operation; electronic control system, components and operation.
- c. The construction and operation of continuously variable transmissions (CVT) and the benefits of this type of gearbox design.
- d. The construction and operation of the sequential manual gearbox (SMG).
- e. The construction and operation of final drive systems including:
 - i. conventional crown wheel and pinion
 - ii. differential gears
 - iii. limited slip differential
- f. The construction and operation of light vehicle 4 wheel drive systems including third differential and differential locks.
- g. The operation of light vehicle traction control systems and launch control.

- h. The construction and operation of light vehicle hub arrangements.
- i. The construction and operation of:
 - i. drive shafts
 - ii. prop shafts including flexible joints and couplings
 - iii. universal joints
 - iv. constant velocity joints
 - v. sliding joints

Symptoms and faults in light vehicle transmissions and drive-line systems

- a. Clutch and coupling faults:
 - . abnormal noises
 - ii. vibrations
 - iii. fluid leaks
 - iv. slip
 - v. judder
 - vi. grab
 - vii. failure to release
- b. Gearbox faults:
 - i. abnormal noises
 - ii. vibrations
 - iii. loss of drive
 - iv. difficulty engaging or disengaging gears
 - v. automatic gear box types
 - vi. abnormal noises
 - vii. vibrations
 - viii. loss of drive
 - ix. failure to engage gear
 - x. failure to disengage gear
 - xi. leaks
 - xii. failure to operate
 - xiii. incorrect shift patterns
 - xiv. electrical and electronic faults
- c. Final drive faults:
 - i. abnormal noises
 - ii. vibrations
 - iii. loss of drive
 - iv. oil leaks
 - v. failure to operate
 - vi. electrical and electronic faults
- d. Drive-lines and couplings:
 - i. abnormal noises
 - ii. vibrations
 - iii. loss of drive

Faults in light vehicle transmission systems

- a. Interpret information for diagnostic tests, vehicle and equipment specifications, use of equipment, testing procedures, test plans, fault codes and legal requirements.
- b. How to prepare equipment for use in diagnostic testing.
- c. How to conduct systematic testing and inspection of transmission system, mechanical, hydraulic, electrical and electronic systems using appropriate tools and equipment including, mullet-meters, oscilloscope and pressure gauges.
- d. How to carry out workshop based and road testing of vehicle and transmission system.
- e. Evaluate and interpret test results from diagnostic and/or road testing.
- f. Compare test result and values with vehicle manufacturer's specifications and settings.
- g. How to dismantle, components and systems using appropriate equipment and procedures.

- h. Assess, examine and evaluate the operation, settings, values, condition and performance of components and systems.
- i. Probable faults, malfunctions and incorrect settings.
- j. Rectification or replacement procedures.

Operation of systems following diagnosis and repair to confirm operation and performance.

Measurements on components to include:

- i. Settings
- ii. input and output values
- iii. voltages
- iv. current consumption
- v. resistance vi. output patterns with oscilloscope
- vii. pressures
- viii. condition
- ix. wear and performance

Unit AE06K – Knowledge of Diagnosis and Rectification of Automotive Auxiliary Electrical Faults

Content:

The electrical principles that are related to light vehicle electrical circuits:

- a. Ohms law
- b. Voltage
- c. Power
- d. Current (AC and DC)
- e. Resistance
- f. Magnetism
- g. Electromagnetism and electromagnetic induction
- h. Digital and fibre optic principles
- i. Electrical units and symbols
- j. Electrical and electronic terminology
- k. Relevant electrical safety

Battery and Charging

- a. The construction and operation of vehicle batteries including:
 - i. low maintenance and maintenance free
 - ii. lead acid and nickel cadmium types
 - iii. cells
 - iv. separators
 - v. plates
 - vi. electrolyte
- b. The operation of the vehicle charging system:
 - i. alternator
 - ii. rotor
 - iii. stator
 - iv. slip ring
 - v. brush assembly
 - vi. three phase output
 - vii. diode rectification pack
 - viii. voltage regulation
 - ix. phased winding connections
 - x. cooling fan
 - xi. alternator drive system

Starting

- a. The layout, construction and operation of engine starting systems: inertia and pre-engaged principles.
- b. The function and operation of the following components:
 - i. inertia and pre-engaged starter motor
 - ii. starter ring gear
 - iii. pinion
 - iv. starter solenoid
 - v. ignition/starter switch
 - vi. starter relay (if appropriate)
 - vii. one-way clutch (pre-engaged starter motor)

Lighting systems and technology

- a. Lighting systems should include:
 - i. Xenon lighting
 - ii. gas discharge lighting
 - iii. ballast system
 - iv. LED
 - v. intelligent front lighting
 - vi. blue lights
 - vii. complex reflectors
 - viii. fibre optic
 - ix. optical patterning

Lighting circuits and the relationship between each circuit

- a. Circuits must include:
 - i. Sidelights including number plate lights and marker lights
 - ii. dipped beam
 - iii. main beam
 - iv. dim/dip
 - v. indicators and hazard lights
 - vi. high intensity and fog light

Common faults and testing methods associated with external lighting system

- a. Fault diagnosis for:
 - i. lighting systems failing to operate correctly
 - ii. switches
 - iii. relays
 - iv. bulbs failing to operate

The operating principles of external lighting systems and multiplexing systems

a. To include all external lighting systems and a good knowledge of multiplexing systems.

The different types of electric windows, and mirror systems and components

- a. Components should include:
 - i. window
 - ii. mirror motors
 - iii. multi-functional switches
 - iv. relays
 - v. total closure modules

The function of component parts in the electric window and mirror systems

- a. Components must include:
 - i. motors
 - ii. relays
 - iii. interfaces
 - iv. modules
 - v. switches

The operating principles of electric windows and mirror systems

- a. Operating principles of the following:
 - i. motors
 - ii. interfaces
 - iii. switches
 - iv. modules

Common faults and testing methods associated with electric windows mirror systems

- a. Fault diagnosis for:
 - i. electric windows failing to open or close
 - ii. electric mirrors fail to adjust
 - iii. slow operation on both systems

The different types of screen heating systems and components

- a. Systems must include:
 - i. heated front screens
 - ii. heated rear screens
 - iii. heated mirrors

The function and operating principles of components for heated screen and mirror systems

- a. Components must include:
 - i. front screen elements
 - ii. mirror elements
 - iii. time control relays
 - iv. multifunction relays and switches

Common faults and testing methods associated with heated screen and mirror systems

- a. Faults must include:
 - i. screen elements not operating
 - ii. timer relays not operating and staying on permanently

The different types of In Car Entertainment (ICE) systems and components

- a. Systems and components must include:
 - i. radio CD and multi play units
 - ii. DVD players
 - iii. MP3 players
 - iv. speakers
 - v. aerial systems
 - vi. amplifiers
 - vii. V.D.U. screens
 - viii. Satellite Navigation
 - ix. communication units

The function of components in ICE systems

- a. Systems include:
 - i. radios
 - ii. CD players
 - iii. video players
 - iv. DVD players
 - v. aerial systems
 - vi. speakers
 - vii. amplifiers
 - viii. VDU screens
 - ix. mobile communication units

The operating principles of ICE systems

a. Operation of entertainment systems speaker and aerial systems

Common faults and testing methods associated with ICE systems

- a. Faults to include:
 - i. entertainment and navigation units not operating

- ii. speaker, aerial and amplifier systems not functioning correctly
- iii. excessive radio interference (suppression)
- iv. use of diagnostic computers and systems

The different types of integrated security/warning systems and components

- a. Components to include:
 - i. control units
 - ii. alarm modules
 - iii. audible warning units
 - iv. immobiliser units
 - v. sensing units
 - vi. horn
 - vii. audible warning speakers

The function of component parts in integrated security and warning systems

- a. Components to include
 - i. control units
 - ii. alarm modules
 - iii. audible warning units
 - iv. interior sensing systems
 - v. immobiliser units
 - vi. relays
 - vii. LED's
 - viii. horns

The operating principles of integrated security and warning systems

a. Operation of alarm systems and audible warning units.

The relevant legislation relevant to security and warning systems

a. Find and apply all relevant legislation for the fitment and use of security and warning systems.

Common faults and testing methods associated with security and warning systems

- a. Components to include:
 - i. control units
 - ii. audible warning units
 - iii. immobiliser units
 - iv. horns
 - v. relays
 - vi. LED's
 - vii. wiring
 - viii. connections and protection devices
 - ix. removal and refitting procedures
 - x. using computer diagnostics to identify faults
 - xi. use of manufacturers diagnostic equipment

The different wiper system components

- a. Components must include:
 - i. wiper motors
 - ii. washer motors
 - iii. wiper linkage
 - iv. multifunction relays
 - v. headlamp wash/wipe

The function of component wiper and washer components

- a. Components and systems must include:
 - i. wiper motors
 - ii. intermittent wash wipe relays
 - iii. parking systems

The operating principles, faults and testing methods of wiper and washer systems

- a. Principles, fault diagnosis and testing for:
 - i. wiper motors failing
 - ii. damaged linkages
 - iii. incorrect operation of intermittent and parking systems
 - iv. earth faults
 - v. control unit failure

The different heater, cooling system components and air con.

- a. Components include:
 - i. heater motors
 - ii. speed rheostats,
 - iii. switches
 - iv. valves
 - v. radiator cooling fan motors
 - vi. relays
 - vii. air conditioning units

The function of component heater, cooling parts and air conditioning

- a. Components include:
 - i. heater motors
 - ii. rheostats
 - iii. valves
 - iv. switches
 - v. relays
 - vi. cooling fan motors
 - vii. air conditioning units
 - viii. thermostatic switches

The operating principles of heater, cooling systems and air conditioning

- a. Principles to include:
 - i. conduction
 - ii. convection
 - iii. radiation
 - iv. circulation
 - v. boiling points
 - vi. states of matter (Gas, liquid, solid)
 - vii. temperature control
 - viii. antifreeze mixtures
 - ix. heat transfer

Common faults and testing methods associated with heater, cooling systems and air conditioning

- a. Fault diagnosis for:
 - i. heater motor failing to operate on all/one speed
 - ii. radiator cooling fan not operating
 - iii. valves
 - iv. relays

- v. switches not operating
- vi. electrical related faults on the air conditioning system

The different types of locking system components

a. Door locking actuators, solenoids, deadlocking actuators, anti-theft modules.

The function of component parts in the locking system

 a. Solenoids, actuators (electrical and pneumatic), multifunctional relays, anti-theft modules and release systems.

The operating principles of locking systems

a. Doors and cabs

Common faults and testing methods associated with locking systems

a. Door locking actuators, solenoids, connections, wiring, relays, and protection devices/fuses

The different types of Supplementary Restraint and Airbag systems

- a. Components include:
 - i. control units
 - ii. sensors
 - iii. seat belt pretensioners
 - iv. airbag assemblies
 - v. wiring systems
 - vi. warning systems

The function of component parts in the Supplementary Restraint and Airbag systems

- a. Components include:
 - i. control units
 - ii. interfaces
 - iii. sensors
 - iv. airbag units
 - v. pretensioners

The operating principles of Supplementary Restraint and Airbag systems

- a. Operation of the sensors.
- b. Operation of the airbag unit.
- c. Operation of the various types of pretension.
- d. Safe handling procedures and regulations.

Common faults and testing methods associated Supplementary Restraint and Airbag systems

- a. Fault diagnosis for Airbag and SRS faults:
 - i. fault code identification
 - ii. wiring faults
 - iii. component failure
 - iv. earth problems
 - v. sensor faults.

How to examine, measure and make suitable adjustments to components are:

- a. Settings
- b. Input and output values
- c. Voltages
- d. Current consumption
- e. Resistance

- f. Input and output patterns with oscilloscope (including frequency and duty cycle measurements)
- g. Condition
- h. Wear and performance

How to select, prepare and use diagnostic and rectification equipment for automotive auxiliary electrical systems:

- a. Voltmeters
- b. Ammeters
- c. Ohmmeters
- d. Multi-meters
- e. Battery testing equipmentf. Dedicated and computer based diagnostic equipment
- g. Oscilloscopes

Unit BP18K – Knowledge of Removing and Fitting Basic Light Vehicle Mechanical, Electrical and Trim (MET) Components and Non-Permanently Fixed Vehicle Body Panels

Content:

Describe procedures to prevent damage to the vehicle, components and contents when removing, storing and refitting basic MET components

- a. The methods that can be used to protect undamaged items to ensure they are removed and refitted without causing unnecessary damage:
 - i. bumpers
 - ii. headlamp units
 - iii. road wheels
 - iv. batteries
 - v. bonnet and boot trim
 - vi. interior trim components
 - vii. exterior trim components
- b. The procedures for the correct storage of vehicle contents.
- c. The process for the reporting of extra damage and items that may have broken when removed or

refitted.

The processes involved when handling batteries

- a. The procedure for the removal, storage and refitting of lead acid batteries.
- b. The procedure for the disposal of lead acid batteries.
- c. Battery checks:
 - i. electrolyte
 - ii. discharge
 - iii. specific gravity
- d. The charging process and procedures:
 - i. trickle charge
 - ii. normal charge
 - iii. boost / start
- e. The health and safety issues involved when charging (explosive gasses).

Types of clips and fixings

- a. The following types of clips and identify reasons and limitations for their use:
 - i. speed
 - ii. 'c'
 - iii. 'd'
 - iv. 'j' type captive nut
 - v. 'r
 - vi. 'u' type captive nut
 - vii. cable clip
 - viii. trim clips
- b. The following types of fixings and identify reasons and limitations for their use:
 - i. pop rivet
 - ii. plastic rivet
 - iii. plastic capture nut
 - iv. nut and bolt
 - v. soulder bolt

- vi. 'Nyloc' type nuts
- vii. washers
- viii. 'Spring' type washers
- ix. self tapping screws and bolts
- x. quick release plastic trim fastenings
- xi. trim tapes
- xii. adhesives and sealers

The processes involved when carrying out quality checks

- a. Items that may have been 'workshop' soiled and describe processes for rectifying:
 - door cards
 - ii. seats
 - iii. carpets
 - iv. boot and bonnet trims
- b. Methods for checking gaps.
- c. The process for checking and aligning headlamps:
 - i. address handling procedures for halogen bulbs
 - ii. address handling and health and safety issues relating to xenon bulbs and systems
- d. Operational checks and rectification methods to include:
 - i. lights
 - ii. washers and wipers
 - iii. SRS systems (checking not rectification)
 - iv. charging system (checking not rectification)
 - v. horn
 - vi. fluid levels
 - vii. interior switches
 - viii. operation of door lock mechanisms

Removing and Fitting Non-Structural Body Panels

- a. Find, interpret and use sources of information applicable to the removal and fitting of basic non welded non-structural body panels.
- b. Select check and use all the tools and equipment required to remove and fit basic non welded non-structural body panels including:
 - i. hinge pin removers
 - ii. spanners
 - iii. screwdrivers
- c. The different types of mechanical fixings for non welded non-structural body panels and when and why they should be used including:
 - i. bolts
 - ii. self tapping bolts
 - iii. speed nuts
 - iv. washers
- d. The correct procedures and processes for removing and fitting of non welded non-structural body panels.
- e. The need for correct alignment of panels and methods to achieve this:
- f. Aperture gaps
- g. Alignment of panel features
- h. Best fit of components to panels
- i. Vehicle geometry
- j. Operation of openings such as doors, tailgates, bonnets etc.
- k. The types of quality control checks that can be used to ensure correct alignment and contour of panels and operation of components to manufacturer's specification.
- I. The method of storing removed panels and the importance of storing them correctly.