

Assessment Requirements

Unit MC04K – Knowledge of Motorcycle Chassis Units and Components

Content:

Steering

- a. The action and purpose of steering geometry:
 - i. castor angle
 - ii. trail angle
 - iii. wheel alignment
- b. The following terms associated with steering:
 - i. castor angle
 - ii. trail angle
 - iii. rake angle
 - iv. wheel alignment
- c. The components and layout of steering systems:
 - i. handlebar
 - ii. conventional steering head
 - iii. leading link
 - iv. bearings
 - v. steering stem
 - vi. yolk
- d. The procedures used for inspecting the serviceability and condition of:
 - i. conventional steering head
 - ii. leading link
- h. Steering system defects to include:
 - i. uneven tyre wear
 - ii. vi steering vibrations
 - iii. wear in linkage
 - iv. bearing failure
 - v. damage linkage
 - vi. excessive play
 - vii. incorrect fork alignment
 - viii. ix incorrect steering geometry

Suspension

- a. The layout and components of suspension systems:
 - i. conventional telescopic fork and tube
 - ii. upside down telescopic fork and tube
 - iii. hossack/Fior (Duolever) fork
 - iv. springer fork
 - v. leading link
- b. The operation of suspension systems and components:
 - i. Convention telescopic fork and tube

- ii. Upside down telescopic fork and tube
- iii. Hydraulic damper
- iv. Double swinging arm
- v. Single swing arm
- vi. Mono shock
- vii. Adjustable damper
- viii. Adjustable spring
- c. The advantages of different systems including:
 - i. Convention telescopic fork and tube
 - ii. Upside down telescopic fork and tube
 - iii. Hydraulic damper
 - iv. Double swinging arm
 - v. Single swing arm vi. Mono shock

 - vii. Adjustable damper
 - viii. Adjustable spring
- d. The forces acting on suspension systems during braking, riding and cornering.
- e. The methods of locating the road wheels against braking, driving and cornering forces.
- g. Suspension terms:
 - rebound i.
 - bump ii.
 - iii. dive
- h. The procedures used for inspecting the serviceability and condition of the suspension system
- Suspension system defects: i.
 - i. wheel hop
 - ii. ride height
 - iii. wear
 - iv. noises under operation
 - v. fluid leakage
 - vi. excessive travel
 - vii. excessive tyre wear
 - viii. poor handling
 - ix. worn dampers
 - x. worn joints
 - xi. damaged linkages

Brakes

- a. The construction and operation of drum brakes:
 - leading and trailing shoe construction i.
 - ii. drum designs
 - iii. cable
 - iv. hydraulic
 - v. self-servo action
 - vi. adjustment
- b. The construction and operation of disc brakes:
 - disc pads i.
 - calliper ii.
 - iii. brake disc
 - iv. ventilated disc

- v. disc pad retraction
- c. The construction and operation of the hydraulic braking system:
 - i. master cylinders
 - ii. disc brake calliper & pistons
 - iii. brake pipe
 - iv. warning lights
- d. The principles and components of electronic ABS systems, electrical and electronic components.
- e. The requirements and hazards of brake fluid:
 - i. boiling point
 - ii. hygroscopic action
 - iii. manufacturer's change periods
 - iv. fluid classification and rating
 - v. potential to damage paint surfaces
- f. Terms associated with mechanical and hydraulic braking systems:
 - i. braking efficiency
 - ii. brake fade
 - iii. ABS
- g. The procedures used for inspecting the serviceability and condition of the braking system
- h. Braking system defects:
 - i. worn brake shoes or pads
 - ii. worn or scored brake drums
 - iii. worn or scored brake discs
 - iv. abnormal brake noises
 - v. brake judder
 - vi. brake adjustments
 - vii. fluid contamination of brake surfaces
 - viii. antilock brake failure
 - ix. fluid leaks
 - x. poor braking efficiency
 - xi. brake bind
 - xii. brake grab
 - xiii. brake fade

Wheel and Tyres

- a. The construction of different types of tyre:
 - i. radial
 - ii. tread patterns
 - iii. tyre mixing regulations
 - iv. tyre applications
- b. Tyre markings:
 - i. tyre and wheel size markings
 - ii. speed rating
 - iii. direction of rotation
 - iv. profile
 - iv tread-wear indicators
- c. Wheel construction:
 - i. light alloy
 - ii. wire wheels
 - iii. bearing arrangement
 - iv. roller ball

- v. taper
- d. The procedures used for inspecting the serviceability and condition of:
 - i. tyres & wheels
 - ii. bearings
- e. The defects associated with tyres and wheels:
 - i. abnormal tyre wear
 - ii. cuts
 - iii. side wall damage
 - iv. wheel vibrations

General

The procedures for dismantling, removal and replacement of motorcycle chassis units, parts and system components

- a. The preparation:
 - i. testing and use of tools and equipment
 - ii. electrical meters and equipment used for dismantling
- b. Appropriate safety precautions:
 - i. PPE
 - ii. vehicle protection when dismantling
 - iii. removing and replacing chassis motorcycle chassis units, parts and system components
- c. The important of logical and systematic processes.
- d. The inspection and testing systems and components.
- e. The preparation of replacement units for re-fitting or replacement of motorcycle chassis units, parts and system components Identify the reasons why replacement components and units must meet the original specifications (OES):
 - i. warranty requirements
 - ii. to maintain performance
 - iii. safety requirements
- f. Refitting procedures.
- g. The inspection and testing of units and systems to ensure compliance with manufacturer's, legal and performance requirements.
- h. The inspection and re-instatement of the vehicle following repair to ensure customer satisfaction:
 - i. cleanliness of motorcycle
 - ii. security of components and fittings
 - iii re-instatement of components and fittings
- i. construction and operation of motorcycle steering and suspension systems
 - a) conventional steering head
 - b) leading link
 - c) swinging arm
 - d) single swing arm
- j. key engineering principles that are related to motorcycle steering and suspension systems
 - a) steering geometry
 - b). steering angles
 - c) hydraulic damping
 - d). stress and strain

- k. key engineering principles that are related to motorcycle steering and suspension systems
 - a) steering geometry
 - b) steering angles
 - c) hydraulic damping
 - d) stress and strain
- I. construction and operation of motorcycle braking systems
 - a) cable
 - b) hydraulic braking
 - c) electronic ABS system
- m. key engineering principles that are related to motorcycle braking systems
 - a) laws of friction
 - b) hydraulics
 - c) properties of fluids
 - d) braking efficiency
- n. construction and operation of motorcycle wheels and tyres
 - a) tyre construction
 - b) tyre markings
 - c) wheel construction
- o. key engineering principles that are related to motorcycle wheel and tyre systems
 - a) friction
 - b) un-sprung weight
 - c) dynamic and static balance