Assessment Requirements

Unit MC07K – Knowledge of Diagnosis and Rectification of Motorcycle Engine Faults

Content:

Single cylinder and multi-cylinder fuel injection systems
a. The operation and construction of injection systems including:
 i. types of air flow/mass sensor
 ii. fuel supply system
 iii. fuel pump
 iv. filter
 v. fuel regulator
 vi. injectors
 vii. electronic control unit (ECU)
 viii. injector pulse width
 ix. sensors
b. The operation of each system under various operating conditions including:
 i. cold starting
 ii. warm up
 iii. hot starting
 iv. acceleration
 v. deceleration
 vi. cruising
 vii. full load
c. Engine speed limiting and knock sensing.

Engine Management
a. The function and purpose of engine management systems.
b. The difference between analogue, digital, programmable and non-programmable systems.
c. Open loop and closed loop control, types of input and output devices.
d. The function and operation of digital components and systems.
e. The operation of engine management systems under various conditions.

Valve Mechanisms
a. The reasons for variable valve timing and multi-valve arrangements and the effect on performance.
b. Layout of multi-valve arrangements, components, operation and drive arrangements.
c. Construction features and operation of variable valve timing engines and electronic control.

Terms Associated with Combustion
a. Flame travel, pre-ignition and detonation.
b. Fuel properties:
 i. octane rating
 ii. flash point
 iii. fire point
 iv. volatility
 v. composition of petrol fuels
 vi. hydro-carbon content
c. Composition of carbon fuels
d. Combustion process for spark ignition engines:
 i. air fuel ratio
ii. lambda ratio
iii. stoichiometric ratio
e. The by-products of combustion for different engine conditions and fuel mixtures:
i. CO
ii. CO₂
iii. O
iv. N
v. H₂O
vi. NOx
f. Describe the legal requirements for exhaust emissions;
i. MOT requirements
ii. EURO regulations

Assessment, Repair and Restoration of Mechanical Engine Components
a. How engine mechanical components are assessed and measured for wear and serviceability:
i. cylinder bores
ii. cylinder heads
iii. crankshaft journals
iv. valve faces
v. valve guides
vi. valve seats
vii. camshafts
b. The methods used for the repair and restoration of engine components.

Symptoms and Faults in Engine Mechanical Systems and Components
a. Symptoms and faults related to:
i. worn cylinders
ii. cylinder liners
iii. pistons
iv. piston rings
v. crankshaft
vi. camshaft
vii. bearings
viii. cylinder head and gasket
ix. valves
x. valve seats and valve guides
xi. cambelts tensioned and pulleys
xii. cam chains tension systems and guides
xiii. lubrication system and components
xiv. oil pump
xv. relief valve
xvi. filter
xvii.

Diagnosis of Faults in Engine Mechanical Systems and Components
a. Interpret information for:
i. diagnostic tests
ii. manufacturer’s motorcycle and equipment specifications
iii. use of equipment
iv. testing procedures
v. test plans
vi. legal requirements
b. The preparation of tools and equipment for use in diagnostic testing and assessment.
c. Systematic assessment, testing and inspection of engine components and systems including:
i. mechanical system & component condition
ii. engine balance
iii. power balance
iv. performance and operation
v. wear
vi. run out
vii. alignment
d. Use of appropriate tools and equipment including:
 i. compression gauges
 ii. leakage testers
 iii. cylinder balance tester
 iv. pressure gauges
 v. micrometers
 vi. vernier gauges
e. Evaluate and interpret test results from diagnostic testing.
f. Compare test result and values with motorcycle manufacturer’s specifications and settings.
g. The procedures for dismantling, components and systems and the use of appropriate equipment and procedures.
h. Assess, examine and measure components including:
 i. settings
 ii. values
 iii. condition
 iv. wear and performance of components and systems
i. Probable faults
 i. malfunctions
 ii. incorrect settings
 iii. wear
j. Rectification or replacement procedures.
 Evaluate operation of components and systems following diagnosis and repair to confirm system performance.

Faults and Symptoms in Ignition Systems
a. Ignition system failure or malfunctions including:
 i. no spark
 ii. misfiring
 iii. backfiring
 iv. cold or hot starting problems
 v. poor performance
 vi. pre-ignition
 vii. detonation
 viii. exhaust emission levels
 ix. fuel consumption
 x. low power
 xi. unstable idle speed

Faults and Symptoms in Electronic Petrol Injection Systems
a. Petrol injection system failures or malfunctions including:
 i. cold or hot starting problems
 ii. poor performance
 iii. exhaust emissions
 iv. high fuel consumption
 v. erratic running
 vi. low power
 vii. unstable idle speed

The Institute of the Motor Industry
Final Draft – July 2010
Faults and Symptoms in Petrol Carburetion Systems
i. cold or hot starting problems
ii. poor performance
iii. exhaust emissions
iv. high fuel consumption
v. erratic running
vi. low power
vii. unstable idle speed

Faults and Symptoms in Engine Management Systems
a. Engine management system failure or malfunctions including:
 i. misfiring
 ii. backfiring
 iii. cold or hot starting problems
 iv. poor performance
 v. pre-ignition
 vi. detonation
 vii. exhaust emission levels
 viii. fuel consumption
 ix. low power
 x. unstable idle speed

Diagnosis of Faults in Electronic Engine Management Systems
a. Locate and interpret information for :
 i. diagnostic tests
 ii. manufacturer’s vehicle and equipment specifications
 iii. use of equipment
 iv. testing procedures
 v. test plans
 vi. fault codes
 vii. legal requirements
b. The preparation of tools and equipment for use in diagnostic testing and assessment.
c. Conduct systematic assessment, testing of engine systems including:
 i. component condition and performance
 ii. component settings
 iii. component values
 iv. electrical and electronic values
 v. system performance and operation
 vi. use of appropriate tools and equipment including gauges
 vii. multi-meter
 viii. breakout box
 ix. oscilloscope
 x. diagnostic tester
 xi. manufacturer’s dedicated equipment
 xii. exhaust gas analyser
 xiii. pressure gauges
d. Evaluate and interpret test results from diagnostic testing.
e. Compare test result, values and fault codes with motorcycle manufacturer’s specifications and settings.
f. The procedures for dismantling, components and systems using appropriate equipment.
g. Assess, examine and measure components including:
 i. settings
 ii. input and output values
iii. voltages
iv. current consumption
v. resistance
vi. output patterns with oscilloscope
vii. condition
viii. wear and performance of components and systems
h. Identify probable faults and indications of:
 i. faults
 ii. malfunctions
 iii. incorrect settings
 iv. wear
 v. values
 vi. inputs and outputs
 vii. fault codes
i. Rectification or replacement procedures.
j. Evaluation and the operation of components and systems following diagnosis and repair to confirm system performance.
 i. speed controls
 ii. control systems
k. Use of appropriate tools and equipment including:
 i. pressure gauges
 ii. multi-meter
 iii. breakout box
 iv. oscilloscope
 v. diagnostic tester
 vi. manufacturer’s dedicated equipment
 vii. flow meter
l. Evaluate and interpret test results from diagnostic testing.
m. Compare test result, values and fault codes with motorcycle manufacturer’s specifications and settings
n. How to dismantle, components and systems using appropriate equipment and procedures
o. How to assess, examine and measure components including: settings, input and output values, voltages, current consumption, resistance, output patterns with oscilloscope, pressures, condition, wear and performance of components and systems
p. Identification of probable faults and indications of faults, malfunctions, incorrect settings, wear, values, inputs and outputs, fault codes, pressures and leaks
q. Rectification or replacement procedures
r. Evaluation and operation of components and systems following diagnosis and repair to confirm system performance

Construction and operation of motorcycle engine systems to include:-
 a. engine mechanical
 b. lubrication systems
 c. fuel systems
 d. ignition systems
 e. cooling system
 f. air and exhaust systems
 g. engine management

Engineering principles that are related to motorcycle engine systems
 a. volumetric efficiency
 b. flame travel, pre ignition and detonation
 c. fuel properties
 d. composition of carbon fuels
 e. combustion process
f. legal requirements for exhaust emissions

Symptoms and causes of faults found in motorcycle engine systems to include:

a. engine mechanical
b. lubrication systems
c. fuel systems
d. ignition systems
e. cooling system
f. air and exhaust systems
g. Engine management

Examine, measure and make suitable adjustments to the components including:

a. settings
b. input and output values
c. voltages
d. current consumption
e. resistance
f. output patterns with oscilloscope
g. pressures
h. condition
i. wear and performance