

Maintenance & Repair - Motorcycle (Syllabus content)

Assessment Requirements

Unit G01/02K – Knowledge of Health, Safety and Good Housekeeping in the Automotive Environment

Content:

Economic use of Resources

a. consumable materials e.g. grease, oils, split pins, locking and fastening devices etc.

Requirement to maintain work area effectively

- a. cleaning tools and equipment to maximise workplace efficiency.
- b. requirement to carry out the housekeeping activities safely and in a way that minimises inconvenience to customers and staff.
- c. risks involved when using solvents and detergents.
- d. advantages of good housekeeping.

Spillages, leaks and waste materials

- a. relevance of safe systems of work to the storage and disposal of waste materials.
- b. requirement to store and dispose of waste, used materials and debris correctly.
- c. safe disposal of special / hazardous waste materials.
- d. advantages of recycling waste materials.
- e. dealing with spillages and leaks

Basic legislative requirements

- a. Provision and Use of Work Equipment Regulations 1992.
- b. Power Presses Regulations 1992.
- c. Pressure Systems and Transportable Gas Containers Regulations 1989.
- d. Electricity at Work Regulations 1989.
- e. Noise at Work Regulations 1989.
- f. Manual Handling Operations Regulations 1992.
- g. Health and Safety (Display Screen Equipment) Regulations 1992.h. Abrasive Wheel Regulations.
- i. Safe Working Loads.
- i. Working at Height Regulations (date)

Routine maintenance of the workplace

- a. Trainees personal responsibilities and limits of their authority with regard to work equipment.
- b. Risk assessment of the workplace activities and work equipment.
- c. Workplace person responsible for training and maintenance of workplace equipment.
- d. When and why safety equipment must be used.
- e. Location of safety equipment.
- f. Particular hazards associated with their work area and equipment.
- g. Prohibited areas.
- h. Plant and machinery that trainees must **not** use or operate.
- i. Why and how faults on unsafe equipment should be reported.
- j. Storing tools, equipment and products safely and appropriately.
- k. Using the correct PPE.
- I. Following manufacturers' recommendations.

m. Location of routine maintenance information e.g. electrical safety check log.

Legislation relevant to Health and Safety

- i. HASAWA
- ii. COSHH
- iii. EPA
- iv. Manual Handling Operations Regulations 1992
- v. PPE Regulations 1992

General regulations to include an awareness of:

- i. Health and Safety (Display Screen Equipment) Regulations 1992
- ii. Health and Safety (First Aid) Regulations 1981
- iii. Health and Safety (Safety Signs and Signals) Regulations 1996
- iv. Health and Safety (Consultation with Employees) Regulations 1996
- v. Employers Liability (Compulsory Insurance) Act 1969 and Regulations 1998
- vi. Confined Spaces Regulations 1997
- vii. Noise at Work Regulations 1989
- viii. Electricity at Work Regulations 1989
- ix. Electricity (Safety) Regulations 1994
- x. Fire Precautions Act 1971
- xi. Reporting of Injuries, Diseases and Dangerous Occurrences Regulations 1985
- xii. Pressure Systems Safety Regulations 2000
- xiii. Waste Management 1991
- xiv. Dangerous Substances and Explosive Atmospheres Regulations (DSEAR) 2002
- xv. Control of Asbestos at Work Regulations 2002

Legislative duties

- a. The purpose of a Health and Safety Policy.
- b. The relevance of the Health and Safety Executive.
- c. The relevance of an initial induction to Health and Safety requirements at your workplace.
- d. General employee responsibilities under the HASAWA and the consequences of noncompliance.
- e. General employer responsibilities under the HASAWA and the consequences of noncompliance.
- f. The limits of authority with regard to Health and Safety within a personal job role.
- g. Workplace procedure to be followed to report Health and Safety matters.

Precautions to be taken when working with vehicles, workshop materials, tools and equipment including electrical safety, pneumatics and hydraulics

- a. Accessing and interpreting safety information
- b. Seeking advice when needed
- c. Seeking assistance when required
- d. Reporting of unsafe equipment
- e. Storing tools, equipment and products safely and appropriately
- f. Using the correct PPE
- g. Following manufacturers recommendations
- h. Following application procedures e.g. hazardous substances
- i. The correct selection and use of extraction equipment

PPE to include:

- a. Typical maintenance procedures for PPE equipment to include:
 - i. typical maintenance log
 - ii. cleaning procedures
 - iii. filter maintenance
 - iv. variation in glove types

v. air quality checks

b Choice and fitting procedures for masks and air breathing equipment.

- c. Typical workplace processes which would require the use of PPE to include:
 - i. welding
 - ii. sanding and grinding
 - iii. filling
 - iv. panel removal and replacement
 - v. drilling
 - vi. cutting
 - vii. chiselling
 - viii. removal of broken glass
 - ix. removal of rubber seals from fire damaged vehicles
 - x. removal of hypodermic needles
 - xi. servicing activities
 - xii. roadside recovery
- d. Unserviceable PPE.
- e. PPE required for a range automotive repair activities. To include appropriate protection of:
 - i. eyes
 - ii. ears
 - iii. head
 - iv. skin
 - v. feet
 - vi. hands
 - vii. lungs

Fire and extinguishers

- a. Classification of fire types
- b. Using a fire extinguisher effectively.
 - Types of Extinguishers
 - a. foam
 - b. dry powder
 - c. CO2
 - d. water
 - e. fire blanket

Action to be taken in the event of a fire to include:

- a. The procedure as:
 - i. raise the alarm
 - ii. fight fire only if appropriate
 - iii. evacuate building
 - iv. call for assistance

Product warning labels to include:

- a. Reasons for placing warning labels on containers.
- b. Warning labels in common use, to include:
 - i. toxic
 - ii. corrosive
 - iii. poisonous
 - iv. harmful
 - v. irritant
 - vi. flammable
 - vii. explosive

Warning signs and notices

a. Colours used for warning signs:

- i. red
- ii. blue
- iii. green
- b Shapes and meaning of warning signs:
 - i. round
 - ii. triangular
 - iii. square
- c. The meaning of prohibitive warning signs in common use.
- d. The meaning of mandatory warning signs in common use.
- e. The meaning of warning notices in common use.
- f. General design of safe place warning signs.

Hazards and risks to include:

- a. The difference between a risk and a hazard.
- b. Potential risks resulting from:
 - i. the use and maintenance of machinery or equipment
 - ii. the use of materials or substances
 - iii. accidental breakages and spillages
 - iv. unsafe behaviour
 - v. working practices that do not conform to laid down policies
 - vi. environmental factors
 - vii. personal presentation
 - viii. unauthorised personal, customers, contractors etc entering your work premises
 - ix. working by the roadside
 - x. vehicle recovery
- c. The employee's responsibilities in identifying and reporting risks within their working environment.
- d. The method of reporting risks that are outside your limits of authority.
- e. Potential causes of:
 - i. fire
 - ii. explosion
 - iii. noise
 - iv. harmful fumes
 - v. slips
 - vi. trips
 - vii falling objects
 - viii accidents whilst dealing with broken down vehicles

Personal responsibilities

- a. The purpose of workplace policies and procedures on:
 - i. the use of safe working methods and equipment
 - ii. the safe use of hazardous substances
 - iii. smoking, eating , drinking and drugs
 - iv. emergency procedures
 - v. personal appearance
- b. The importance of personal appearance in the control of health and safety.

Action to be taken in the event of colleagues suffering accidents

a. The typical sequence of events following the discovery of an accident such as:

- i. make the area safe
- ii. remove hazards if appropriate i.e. switch off power
- iii. administer minor first aid
- iv. take appropriate action to re-assure the injured party
- v. raise the alarm

- vi. get help
- vii. report on the accident

b Typical examples of first aid which can be administered by persons at the scene of an accident:

- i. check for consciousness
- ii. stem bleeding
- iii. keep the injured person's airways free
- iv. place in the recovery position if injured person is unconscious
- v. issue plasters for minor cuts
- vi. action to prevent shock i.e. keep the injured party warm
- vii. administer water for minor burns or chemical injuries
- viii. wash eyes with water to remove dust or ingress of chemicals (battery acid)
- ix. need to seek professional help for serious injuries

c Examples of bad practice which may result in further injury such as:

- i. moving the injured party
- ii. removing foreign objects from wounds or eyes
- iii. inducing vomiting
- iv straightening deformed limbs

Unit G3K – Knowledge of Support for Job Roles in the Automotive Environment

Content:

The structure of a typical vehicle repair business

a. How these areas relate to each other within the business

- i. body shop
- ii. vehicle repair workshop
- iii. paint shop
- iv. valeting
- v. vehicle parts store
- vi. main office
- vii. vehicle sales
- viii. reception

b. Sources of information

- i. other staff
- ii. manuals
- iii. parts lists
- iv. computer software and the internet
- v. manufacturer
- vi. diagnostic equipment

Communication requirements when carrying out vehicle repairs

- a. Locating and using correct documentation and information for:
 - i. recording vehicle maintenance and repairs
 - ii. vehicle specifications
 - iii. component specifications
 - iv. oil and fluid specifications
 - v. equipment and tools
 - vi. identification codes
- b. Procedures for:
 - i. referral of problems
 - ii. reporting delays
 - iii. additional work identified during repair or maintenance
 - iv. keeping others informed of progress

Methods of Communication

- i. verbal
- ii. signs and notices

- iii. memos
 iv. telephone
 v. electronic mail
 vi. vehicle job card
 vii.notice boards
 viii. SMS text messaging
 ix. Letters
- a. Organisational & Customer requirements:
 - i. importance of time scales to customer and organization
 - ii. relationship between time and costs
 - iii. meaning of profit
- b. Choice of Communication
 - i. distance
 - ii. location
 - iii. job responsibility
- b. Importance of maintaining positive working relationships:
 - i. morale
 - ii. productivity
 - iii. company image
 - iv. customer relationships
 - v. colleagues

Unit G4K – Knowledge of Materials, Fabrication, Tools and Measuring Devices used in the Automotive Environment

Content:

Common types of hand tools used for fabricating and fitting in the automotive workplace. To include:

- a. files
- b. hacksaws and snips
- c. hammers
- d. screwdrivers
- e. pliers
- f. spanners
- g. sockets
- h. punches
- i. types of drill and drill bits
- j. taps and dies
- k. stud removers
- I. marking out tools

Common measuring devices used for fabrication and fitting in the automotive workplace. To include:

- a. rule/tape
- b. callipers
- c. feeler gauge
- d. volume measures
- e. micrometer
- f. dial gauges
- g. torque wrenches
- h. depth gauges

Common electrical measuring tools used in the repair of vehicles and components. To include:

- a. ammeter
- b. voltmeter
- c. ohmmeter
- d. multi-meter

Common electrical terms when measuring:

- a. voltage
- b. current
- c. resistance

Workshop equipment (including appropriate PPE). To include:

- a. hydraulic jacks
- b. axle stands
- c. pillar drills
- d. air tools
- e. vehicle lifts
- f. cranes

g. hoists

h. electrical power tools

Properties, application and limitations (to include safe use) of ferrous and non-ferrous metals used when constructing, modifying and repairing vehicles and components. Materials to include:

- a. carbon steels
- b. alloy steels
- c. cast iron
- d. aluminium alloys
- e. brass
- f. copper
- g. lead

Properties, application and limitations (to include safe use) of non-metallic materials used when constructing, modifying and repairing vehicles and components. Materials to include:

- a. glass
- b. plastics (inc. GRP)
- c. Kevlar
- d. rubber

Terms relating to the properties of materials. To include:

- a. hardness
- b. toughness
- c. ductility
- d. elasticity
- e. tenacity
- f. malleability
- g. plasticity

Unit G6K – Knowledge of how to Make Learning Possible through Demonstrations and Instruction

Content:

Separate areas of demonstration which encourage learning. To include:

- a. demonstration is particularly applicable to learning manual skills.
- b. learning to do something usually involves:
 - i. purpose the aim or objective
 - ii. procedure the most effective way of completing the task
 - iii. practice all skills require practice to improve
- c. practical tasks are more quickly learnt through demonstration.
- d. emphasis is required to body movements when demonstrating.
- e. the demonstrator should encourage learners to ask questions.
- f. emphasis should be placed upon key points whilst demonstrating.
- g. any demonstration should ensure that all safety aspects are covered.

Types of learning which are best achieved and supported through demonstrations. To include:

- a. types of learning:
 - i. psychomotor measurement of manual skill performance
 - ii. cognitive learning involving thought processes iii. affective demonstration of feelings, emotions of
 - demonstration of feelings, emotions or attitudes
- b. demonstration involves learning to do something (Psychomotor Domain).

c. combination of instruction and practical demonstrations are very effective means of learning practical skills.

How to structure demonstration and instruction sessions. To include:

- a. Before the demonstration and/or instruction ensure that the following good practice is recognised:
 - i. identify key points
 - ii. relate theoretical underpinning knowledge to key points
 - iii. rehearse to ensure that all equipment is working
 - iv. ensure all students can see even small equipment and processes
 - v. time the demonstration
 - vi. consider how to make students participate
 - vii. consider how to emphasise safe working practices
- b. During the demonstration and/or instruction good practice is to:
 - give a clear introduction i.
 - ii. identify any tools/equipment
 - determine the current audience level of knowledge iii.
 - iv. complete the demonstration correctly (do not show how not to do it)
 - v. stress key points and show links between them
 - vi. monitor safety aspects
 - vii. check learner understanding
- c. After the demonstration(if possible)
 - enable the audience to practice the techniques i.
 - ii. provide feedback on their performance

How to identify individual learning needs

a. Diagnose the learning needs of your audience to include:

- i. what competencies they already have
- ii. what experience they have of the subject area
- iii. what competencies they need to achieve
- iv. what demonstration techniques are best suited to their needs
 - iv. how you will assess their needs have been met

What factors are likely to prevent learning. To include:

- i. language barriers
- ii. physical barriers
- iii. specialist knowledge
- iv. pace of learning
- v. method of delivery
- vi. environmental factors
- vii. teaching styles
- viii. dyslexia

How to check learners understanding and progress

- a. Questionnaires.
- b. Verbal questioning.
- c. Observation.
- d. Assessment.
- e. Role play.
- f. Projects/assignments.
- g. Multi-choice questions.
- h. Simulation.
- i. Tests.

How to organise information and prepare materials

- a. Identify the course aim.
- b. Identify the subject aim.
- c. Identify the lesson aim.
- d. Complete a lesson plan plan the teaching.
- e. Identify a series of 'cues' to be used during the lesson.
- f. Logically organise the information.
- g. Use suitable resources and equipment to maximise learning opportunities.
- h. Assess the learners progress and understanding.

Instructional techniques

- a. types of instructional techniques to include:
 - i. lectures
 - ii. handouts
 - iii. team teaching
 - iv. peer teaching
 - v. discussion individual, group and peer
 - vi. question and answer
 - vii. multimedia
 - viii. seminars
 - ix. case studies
 - x. project/assignments

Environmental factors that effect learning

a. environmental factors that should be considered before demonstration/instruction to include:

- i. loud noises
- ii. bright colours
- iii. bright lights

- iv. strong smells
- v. atmosphere
- vi. temperature
- vii. classroom seating
- viii. classroom layout
- ix. bright lights

Health and safety factors that affect learning

- health and safety factors that should be considered before demonstration/instruction to include:
 - i. assessment of risk and hazards
 - ii. condition of electrical/electronic equipment
 - iii. position of cables and wires
 - iv. safety of equipment used in demonstration/instruction
 - v. condition of classroom equipment/furniture/structure
 - vi. suitable protective clothing/equipment

Analysis of demonstration/instruction

- a. Analysis of demonstration/instruction to include:
 - i. feedback from students
 - ii. feedback from colleagues
 - iii. organisational quality assessment
 - iv. feedback from external organisations
 - v. awarding body requirements

Developments in learning. To include:

- i. multimedia based materials
- ii. web based materials
- iii interactive materials

How to choose and prepare appropriate materials. To include:

- a. putting information in order
- b. deciding whether the language used is appropriate
- c. type of material i.e. paper and technology based etc.

Unit G8K – Knowledge of how to Identify and Agree Customer Service Needs

Content:

Organisational Requirements

a. Explain the organisation's terms and conditions applicable to the acceptance of customer vehicles.

- b. Explain the content and limitations of vehicle and component warranties for the vehicles dealt with by your organisation.
- c. Detail what, if any, limits there are to the authority for accepting vehicles.
- d. Detail why it is important to keep customers advised of progress and how this is achieved within the organisation.
- e. Detail the organisation's procedures for the completion and processing of documentation and records, including payment methods and obtaining customer signatures as applicable.

Principles of Customer Communication and Care.

- a. First Impressions.
- b. Listening skills 80:20 ratio.
- c. Eye contact and smiling.
- d. Showing interest and concern.
- e. Questioning techniques and customer qualification.
- f. Giving clear non-technical explanations.
- g. Confirming understanding (statement/question technique, reflective summary).
- h. Written communication purpose, content, presentation and style.
- i. Providing a high quality service fulfilling (ideally exceeding) customer expectations within agreed time frames.
- j. Obtaining customer feedback and corrective actions when dissatisfaction expressed.
- k. Dealing with complaints.

Company Products and Services

- a. Service standards
 - i. national
 - ii. manufacturer
 - iii. organisational

b. The range and type of services offered by the organisation.

- i. diagnostic.
- ii. servicing.
- iii. repair.
- iv. warranty.
- v. MOT testing.
- vi. fitment of accessories/enhancements.
- vii. internal.
- c. The courses of action available to resolve customer problems.
 - i. the extent and nature of the work to be undertaken.
 - ii. the terms and conditions of acceptance.
 - iii. the cost.
 - iv. the timescale.
 - v. required payment methods.

- d. The effect of resource availability upon the receipt of customer vehicles and the completion of work.
 - i. levels and availability of equipment.
 - ii. levels and availability of technicians.
 - iii. workshop loading systems.
- e. How to access costing and work completion time information.
 - i. manuals.
 - ii. computer based.

Vehicle Information Systems, Servicing and Repair Requirements

- a. Accessing technical data including diagnostics.
- b. Servicing to manufacturer requirements/standards.
- c. Repair/operating procedures.d. MOT standards/requirements.
- e. Quality controls interim and final.
- f. Requirements for cleanliness of vehicle on return to customer.
- g. Handover procedures.

Consumer Legislation To include:

- a. consumer protection
- b. sale of goods
- c. data protection
- d. product liability
- e. health and safety
- f. discrimination

Unit MC01K – Knowledge of Routine Motorcycle Maintenance

Content:

Motorcycle maintenance, inspection and adjustment and record findings

Motorcycle inspection techniques used in routine maintenance including:

- i. aural
- ii. visual and functional assessments on engine systems
- iii. visual and functional assessments on transmission power train
- iv. chassis systems
- v. wheels and tyres
- vi. electrical and electronic systems
- vii. motorcycle fame and components

The procedures used for inspecting the condition and serviceability of the following:

- i. filters
- ii. drive belts
- iii. cables
- iv. brake linings
- v. pads
- vi. ignition components
- vii. hoses
- viii. tyres
- ix. lights
- x. chain and sprockets
- xi. steering and suspension
- xii. battery and charging

The procedures used for checking gaps and clearances:

- i. ignition components
- ii. carburettor
- iii. valve clearances
- iv. clutch
- v. drive train
- vi. brakes

Preparation and use appropriate use of equipment to include:

- i. test instruments
- ii. emission equipment
- iii. wheel alignment
- iv. beam setting equipment
- v. tyre tread depth gauges

Procedures for checking and replenishing fluid levels:

- i. oil
- ii. water
- iii. hydraulic fluids
- iv. greases

Procedures for checking and replacement of lubricants:

- i. replace oil filters
- ii. check levels
- iii. types of oil

- iv. cleanliness
- v. disposal of old oil and filters

Procedures for carrying out adjustments on motorcycle systems or components:

- i. clearances
- ii. settings
- iii. alignment
- iv. operational performance (engine idle, exhaust gas)

Procedures for checking electrical systems:

- i. operation
- ii. security
- iii. performance

Importance and process of detailed inspection procedures:

- i. following inspection checklists
- ii. checking conformity to manufacturer's specifications
- iii. UK and European legal requirements

Importance and process of completing all relevant documentation relating to motorcycle maintenance:

- i. inspection records
- ii. job cards
- iii. motorcycle repair records
- iv. motorcycle service history

The need to use motorcycle protection prior to service and repair Requirements and methods used for protecting:

- i. motorcycle body panels
- ii. paint surfaces
- iii. chrome surfaces

The need to check the motorcycle prior to routine maintenance

The need to inspect the motorcycle following routine maintenance:

- i. professional presentation of motorcycle
- ii. customer perceptions

The basic checks of motorcycle following routine maintenance:

- i. removal of oil and grease marks
- ii. body panels
- iii. chrome
- iv. paint surfaces
- v. motorcycle controls
- vi. re-instatement of components

Different systems to be inspected while carrying out motorcycle routine maintenance.

- i. engine and power train systems
- ii. chassis systems
- iii. wheels and tyres
- iv. electrical and electronic systems
- v. motorcycle frame and components

Unit MC02.1K – Knowledge of Motorcycle Internal Engine Systems

Content:

Engines

- a. Engine types and configurations:
 - i. inline
 - ii. flat
 - iii. vee
 - iv. four-stroke and two-stroke cycle for spark ignition engines
 - v. naturally aspirated and turbo-charged engines
- b. Relative advantages and disadvantages of different engine types and configurations.
- c. Engine components and layouts:
 - i. single (OHC) and multi camshaft (DOHC)
 - ii. single and multi cylinder (2, 3, 4, 6 cylinder types)
 - iii. port design: inlet, transfer and exhaust
- d. Cylinder head layout and design, combustion chamber and piston design.
- e. The procedures used when inspecting engines
- f. The procedures to assess:
 - i. serviceability
 - ii. wear
 - iii. condition
 - iv. clearances
 - v. settings
 - vi. linkages
 - vii. joints
 - viii. fluid systems
 - ix. adjustments
 - x. operation and functionality
 - xi. security
- g. Symptoms and faults associated with mechanical engine operation:
 - i. poor performance
 - ii. abnormal or excessive mechanical noise
 - iii. erratic running
 - iv. low power
 - v exhaust emissions
 - v. abnormal exhaust smoke
 - vi. unable to start
 - vii. exhaust gas leaks to cooling system
 - viii. exhaust gas leaks

Lubrication

a. The advantages and disadvantages of wet and dry systems.

- b. Engine lubrication system:
 - i. splash and pressurised systems
 - ii. pumps
 - iii. pressure relief valve
 - iv. filters
 - v. oil ways
 - vi. oil coolers

c. Terms associated with lubrication and engine oil:

- i. full-flow
- ii. hydrodynamic
- iii. boundary
- iv. viscosity
- v. multi-grade
- vi. natural and synthetic oil
- vii. viscosity index
- viii multi-grade

d. The requirements and features of engine oil:

- i. operating temperatures
- ii. pressures
- iii. İubricant grades
- iv. viscosity
- v. multi-grade oil
- vi. additives
- vii. detergents
- viii. dispersants
- ix. anti-oxidants inhibitors
- x. anti-foaming agents
- xi. anti-wear
- xii. synthetic oils
- xiii. organic oils
- xiv mineral oils
- e. Symptoms and faults associated with lubrication systems:
 - h. excessive oil consumption
 - ii oil leaks
 - iii. oil in water
 - iv low or excessive pressure
 - v. oil contamination

f. The procedures used when inspecting lubrication system

Cooling,

- a. The components, operating principles, and functions of engine cooling systems
- b. Procedures used to remove, replace and adjust cooling system components
 - i. cooling fans and control devices
 - ii. fins and cowlings
 - iii. header tanks, radiators and pressure caps
 - iv expansion tanks hoses, clips and pipes
 - v. thermostats impellers and coolant

- c. The preparation and method of use of appropriate specialist equipment used to evaluate system performance following component replacement
 - i. system pressure testers
 - ii. pressure cap testers
 - iii. anti-freeze testing equipment
 - iv. chemical tests for the detection of combustion gas
- d. Symptoms and faults associated with cooling systems:
 - i. water leaks
 - ii. water in oil
 - iii. blocked fins
 - iv excessively low or high coolant temperature
- e. The procedures used when inspecting i. cooling systems

Clutch

- a. The components, operating principles, and functions of clutch's
 - i. wet clutch
 - ii. dry clutch
 - iii. centrifugal
 - iv. cable control
 - v. hydraulic control
- b. Procedures used to remove, replace and adjust clutch systems and components
- c. The preparation and method of use of appropriate specialist equipment used to evaluate system performance following component replacement
- d. Symptoms and faults associated with clutch systems
 - i. slip
 - ii. drag

Transmission

- a The components, operating principles, and function of transmission systems
 - i. conventional gear
 - ii CVT
 - iii Automatic
- b. the operating components within transmission systems
 - i. gears
 - ii. shafts
 - iii. selectors
 - iv. shift lever and drum mechanisms
 - v. bearings
 - vi. pulleys
- c. The preparation and method of use of appropriate specialist equipment used to evaluate transmission system performance following component replacement
- d. Procedures used to remove, replace and adjust transmission systems and components
- e. Symptoms and faults associated with transmission systems
 - i. abnormal noises
 - ii. vibration
 - iii. fluid leaks

- iv wear
- v. gear selection

General

- a. The preparation, testing and use of tools and equipment used for:
 - i. dismantling
 - ii. removal and replacement of engine mechanical and power train system components
- b. Appropriate safety precautions:
 - i. PPE
 - ii. motorcycle protection when dismantling
 - iii. removal and replacing engine mechanical and power train units and components
- c. The important of logical and systematic processes.
- d. The inspection and testing of engine mechanical and power train units and components.
- e. The preparation of replacement units for re-fitting or replacement.
- f. The reasons why replacement components and units must meet the original specifications (OES) warranty requirements, to maintain performance and safety requirements.
- g. Refitting procedures.
- h. The inspection and testing of units and system to ensure compliance with manufacturer's, legal and performance requirements.
- i. The inspection and re-instatement of the motorcycle following repair to ensure customer satisfaction;
 - i. cleanliness of motorcycle
 - ii. security of components and fittings
 - iii. re-instatement of components and fittings
- j. construction and operation of motorcycle engine mechanical systems
 - a. four stroke
 - b. two stroke
- k. key engineering principles that are related to engine mechanical systems
 - a. compression ratio's
 - b. volumetric efficiency
 - c. cylinder capacity
- I. common terms used in motorcycle engine mechanical system design
 - a. tdc
 - b. bdc
 - c. stroke
 - d. bore
 - e. ports
- m. construction and operation of motorcycle engine lubrication components and systems
 - a. full flow
 - b. by pass
 - c. wet sump
 - d. dry sump
 - e. total loss
- n. key engineering principles that are related to motorcycle engine lubrication systems
 - a. classification of lubricants
 - b. properties of lubricants
 - c. methods of reducing friction
- o. common terms used in motorcycle engine lubrication system design

- p. identify motorcycle engine cooling system components
 - a. air cooling
 - b. liquid cooling
- q. key engineering principles that are related to motorcycle engine cooling systems
 - a. heat transfer
 - b. linear and cubical expansion
 - c. specific heat capacity
 - d. boiling point of liquids
- r. construction and operation of motorcycle clutch and transmission system components
 - a. dry clutch
 - b. wet clutch
 - c. constant mesh
 - d. CVT
 - e. automatic
 - f. chain and sprocket
 - g. shaft and gear
 - h. belt and pulley

Unit MC02.2K – Knowledge of Motorcycle Fuel, Ignition, Air and Exhaust System Units and Components

Content:

Fuel - Petrol

- a. The function and layout of carburettor systems:
 - i. carburettor, single and multi-type
 - ii. fuel tank and control lever
 - iii. fuel pumps
- b. The operation of carburettor systems
 - i. carburettor, single and multi-type
 - ii. float chamber and designs
 - iii. vacuum and piston assembly
 - iv. needles and jets
 - v. adjustment for idle and mixture
 - vi. choke and enrichment devise
 - vii. fuel tank and control lever
 - viii. fuel pumps
- c. The function of petrol injection systems and components
 - i. petrol injection systems
 - ii. injection components
 - iii. injection pump
 - iv. pump relay
 - v. injector valve
 - vi. air flow sensor
 - vii. throttle potentiometer
 - viii. idle speed control valve
 - ix. coolant sensor
 - x. MAP and air temperature sensors
 - xi. mechanical control devices
 - xii. electronic control units
- d. The operation petrol injection systems and components:
 - i. injection pump
 - ii. pump relay
 - iii. injector valve
 - iv. air flow sensor
 - v. throttle potentiometer
 - vi. idle speed control valve
 - vii. coolant sensor
 - viii. MAP and air temperature sensors
 - ix. electronic control units
 - x. fuel pressure regulators
 - xi. fuel pump relays
 - xii. lambda exhaust sensors
 - xiii. flywheel and camshaft sensors
 - xiv. air flow sensors (air flow meter and air mass meter)

- e. The procedures used when inspecting petrol system
- f. The chemically correct air/fuel ratio for petrol engines
- g. weak and rich air/fuel ratios for petrol engines.

h. exhaust composition and by-products for chemically correct, rich and weak air/fuel ratios of petrol engines:

- i. water vapour (H2O)
- ii. nitrogen (N)
- iii. carbon monoxide (CO)
- iv. carbon dioxide (CO2)
- v. carbon (C)
- vi. hydrocarbon (HC)
- vii. oxides of nitrogen (NOx, NO2, NO) and particulates
- i. Symptoms and faults associated with fuel systems
 - i. erratic running
 - ii. weak mixture
 - iii. rich mixture
 - iv. two stroke mixtures
 - v. excessive smoke
 - vi. leaks
 - vii. failure to start
 - viii. poor economy
 - ix. failure to meet emission control

Ignition

- a. The layout of ignition systems,
- b. ignition circuits and components:
 - i. LT Circuit
 - ii. battery
 - iii. ignition switch
 - iv. electronic trigger devices
 - v. HT Circuit
 - vi. spark plugs (reach, heat range, electrode features
 - vii. ignition leads
 - viii. ignition coil
 - ix. ignition timing advance system
- c. The operation electronic system components:
 - i. amplifiers
 - ii. triggering systems
 - iii. inductive pick-ups
 - iv. amplifier units.
 - v. control units

d. Ignition terminology:

- i. dwell angle
- ii. dwell time
- iii. advance and retard of ignition timing
- iv. static and dynamic ignition timing
- e. The operation of electronic ignition systems under various conditions and loads to include:
 - i. engine idling
 - ii. during acceleration
 - iii. under full load

- iv. cruising
- v. overrun
- vi cold starting
- f. Basic principle of engine management systems:
 - i. closed loop system
 - ii. integrated ignition
 - iii. injection systems
 - iv sensors

g. The procedures used when inspecting

- i. ignition system
- ii. engine management
- iv. sensors
- h. Symptoms and faults associated with ignition system operation
 - i. failure to start hot or cold
 - ii. exhaust emissions
 - iii. poor performance
 - iv. ignition noise
 - v. misfire
 - vi. damp

Air supply and exhaust systems

- i. The construction and purpose of air filtration systems.
- ii. The operating principles of air filtration systems.
- iii. The construction and purpose of the exhaust systems.
- iv. The operating principles of the systems.
- v. Exhaust system design to include silencers and catalytic converters.
- vi. The procedures used when inspecting induction, air filtration and exhaust systems
- vii. Symptoms and faults associated with air and exhaust systems

General

Ι.

- k. The preparation, testing and use of tools and equipment used for:
 - i. dismantling
 - ii. removal and replacement of engine units and components
 - Appropriate safety precautions:
 - i. PPE
 - ii. motorcycle protection when dismantling
 - iii. removal and replacing engine units and components
- m. The important of logical and systematic processes.
- n. The inspection and testing of engine units and components.
- o. The preparation of replacement units for re-fitting or replacement.
- p. The reasons why replacement components and units must meet the original specifications (OES) – warranty requirements, to maintain performance and safety requirements.
- q. Refitting procedures.
- r. The inspection and testing of units and system to ensure compliance with manufacturer's, legal and performance requirements.
- s. The inspection and re-instatement of the motorcycle following repair to ensure customer satisfaction;
 - i. cleanliness of motorcycle interior and exterior
 - ii. security of components and fittings
- t. re-instatement of components and fittings

- u. construction and operation of motorcycle engine fuel systems
 - a) carburettor
 - b) multi point injection
- v.. key engineering principles that are related to motorcycle engine fuel systems
 - a) properties of fuels
 - b) combustion processes
 - c) exhaust gas constituents
- w. key engineering principles that are related to motorcycle engine ignition systems
 - a) flame travel
 - b) ignition timing
 - c) voltages
- x. construction and operation of motorcycle engine air supply and exhaust systems
 - a) manifolds
 - b) filters
 - c) silencers, including two stroke
 - d) catalytic converter

y. key engineering principles that are related to motorcycle engine air supply and exhaust systems

- a) sound absorption
- b) reduction of harmful emissions

Unit MC03K – Knowledge of Removing and Replacing **Motorcycle Electrical Units and Components**

Content:

Electrical/Electronic Principles

- a. Electrical units:
 - i. volt (electrical pressure)
 - ii. ampere (electrical current)
 - iii. ohm (electrical resistance)
 - iv. watt (power)
- b. The requirements for an electrical circuit:
 - i. battery
 - ii. cables iii. switch

 - iv. current consuming device
 - v. continuity
- c. The direction of current flow and electron flow.
- d. Series and parallel circuits to include:
 - current flow i.
 - ii. voltage of components
 - iii. volt drop
 - iv. resistance
 - v. the effect on circuit operation of open circuit component(s)
- e. Earth and insulated return systems.
- f. Cable sizes and colour codes.
- g. Different types of connectors, terminals and circuit protection devices.
- h. Common electrical and electronic symbols.

- i. The meaning of:
 - i. short circuit
 - ii. open circuit
 - iii. bad earth
 - iv. high resistance
 - v. electrical capacity

j. The principles of motorcycle electronic systems and component.

k. Interpret motorcycle wiring diagrams to include:

- i. motorcycle lighting
- ii. auxiliary circuits
- iii. indicators
- iv. starting and charging systems
- I. Function and construction of electrical components including:
 - i. circuit relays
 - ii. bulb types
 - iii. cooling fan
 - iv. circuit protection
- m. The safety precautions when working on electrical and electronic systems to include:
 - i. disconnection and connection of battery
 - ii. avoidance of short circuits
 - iii. power surges
 - iv. prevention of electric shock
 - v. protection of electrical and electronic components
 - vi. protection of circuits from overload or damage
- n. The set-up and use of:
 - i. digital and analogue multi-meters
 - ii. voltmeter
 - iii. ammeter
 - iv. ohmmeter
 - v. oscilloscope
 - vi. manufacturer's dedicated test equipment
- o. Electrical and electronic checks for electrical and electronic systems to include:
 - i. connections
 - ii. security
 - iii. functionality
 - iv. performance to specifications
 - v. continuity, open circuit
 - vi. short circuit
 - vii. high resistance
 - viii. volt drop
 - ix. current consumption
 - x. output patterns (oscilloscope)

p. Symptoms and faults associated with electrical and electronic systems to include:

- i. high resistance
- ii. loose and corroded connections
- iii. short circuit
- iv. excessive current consumption
- v. open circuit
- vi. malfunction
- vii. poor performance
- viii. battery faults to include flat battery
- ix. failure to hold charge
- x. low state of charge

- xi. overheating
- xii. poor starting

Battery and Charging

The construction and operation of motorcycle batteries including:

- i. low maintenance and maintenance free
- ii. lead acid and nickel cadmium types
- iii. cells
- iv. separators
- v. plates
- vi. electrolyte

The operation of the motorcycle charging system:

- i. alternator
- ii. rotor
- iii. stator
- iv. slip ring
- v. brush assembly
- vi. three phase output
- vii. diode rectification pack
- viii. voltage regulation
- ix. phased winding connections
- x. cooling fan
- xi alternator drive

Starting

- a. The layout, construction and operation of engine starting systems:
- b. The function and operation of the following components:
 - i. starter motor
 - ii. starter clutch mechanism
 - iii. pinion
 - iv. starter solenoid
 - v. clutch and gear safety switch
 - vi. ignition/starter switch
 - vii. stand switches
 - viii. starter relay (if appropriate)

Lighting

- a. Function and construction of electrical components including:
 - i. front and tail lamps
 - ii. main and dip beam headlamps
 - iii. lighting and dip switch
 - iv. directional indicators
 - v. flash
- b. The circuit diagram and operation of components for:
 - i. side and tail lamps
 - ii. headlamps
 - iii. direction indicators
- c. The statutory requirements for motorcycle lighting when using a motorcycle on the road.
- d. Headlamp adjustment and beam setting.

Auxiliary Systems

a. Function and construction of electrical components including:

- i. anti theft devises
- ii. horn
- iii. heated grips
- iv. power screen

b. The circuit diagram and operation of components for:

- i. anti theft devises
- ii. horn
- iii. heated grips
- iv. power screen

General

- a. The preparation, testing and use of:
 - i. tools and equipment
 - ii. electrical meters and equipment used for dismantling
 - iii. removal and replacement of electrical and electronic systems and components
- b. Appropriate safety precautions:
 - i. PPE
 - ii. motorcycle protection when dismantling
 - iii. removal and replacing electrical and electronic components and systems
- c. The important of logical and systematic processes.
- d. Preparation of replacement units for re-fitting or replacement electrical and electronic components and systems.
- e. The reasons why replacement components and units must meet the original specifications (OES) warranty requirements, to maintain performance, safety requirements.
- f. Refitting procedures.

g. The inspection and testing of units and systems to ensure compliance with manufacturer's, legal and performance requirements.

- h. Inspection and re-instatement of the motorcycle following repair to ensure:
 - i. customer satisfaction
 - ii. cleanliness of motorcycle interior and exterior
 - iii. security of components and fittings
 - iv. re-instatement of components and fittings
- i. Construction and operation of motorcycle auxiliary systems Auxiliary systems to include:
 - i. Lighting systems
 - ii. security and alarm systems
 - iii. comfort and convenience systems
 - iv. information system
 - v. communication systems
 - vi. monitoring and instrumentation systems

Unit MC04K – Knowledge of Motorcycle Chassis Units and **Components**

Content:

Steering

- a. The action and purpose of steering geometry:
 - i. castor angle
 - ii. trail angle
 - iii. wheel alignment
- b. The following terms associated with steering:
 - i. castor angle

 - ii. trail angle iii. rake angle
 - iv. wheel alignment
- c. The components and layout of steering systems:
 - i. handlebar
 - ii. conventional steering head
 - iii. leading link
 - iv. bearings
 - steering stem v.
 - vi. yolk
- d. The procedures used for inspecting the serviceability and condition of:
 - i. conventional steering head
 - ii. leading link
- h. Steering system defects to include:
 - i. uneven tyre wear
 - ii. vi steering vibrationsiii. wear in linkage

 - iv. bearing failure
 - v. damage linkage
 - vi. excessive play
 - vii. incorrect fork alignment
 - viii. ix incorrect steering geometry

Suspension

- a. The layout and components of suspension systems:
 - conventional telescopic fork and tube i.
 - ii. upside down telescopic fork and tube
 - iii. hossack/Fior (Duolever) fork
 - iv. springer fork
 - v. leading link
- b. The operation of suspension systems and components:

- i. Convention telescopic fork and tube
- ii. Upside down telescopic fork and tube
- iii. Hydraulic damper
- iv. Double swinging arm
- v. Single swing arm
- vi. Mono shock
- vii. Adjustable damper
- viii. Adjustable spring
- c. The advantages of different systems including:
 - i. Convention telescopic fork and tube
 - ii. Upside down telescopic fork and tube
 - iii. Hydraulic damper
 - iv. Double swinging arm
 - v. Single swing arm
 - vi. Mono shock
 - vii. Adjustable damper
 - viii. Adjustable spring
- d. The forces acting on suspension systems during braking, riding and cornering.
- e. The methods of locating the road wheels against braking, driving and cornering forces.
- g. Suspension terms:
 - i. rebound
 - ii. bump
 - iii. dive
- h. The procedures used for inspecting the serviceability and condition of the suspension system
- i. Suspension system defects:
 - i. wheel hop
 - ii. ride height
 - iii. wear
 - iv. noises under operation
 - v. fluid leakage
 - vi. excessive travel
 - vii. excessive tyre wear
 - viii. poor handling
 - ix. worn dampers
 - x. worn joints
 - xi. damaged linkages

Brakes

- a. The construction and operation of drum brakes:
 - i. leading and trailing shoe construction
 - ii. drum designs
 - iii. cable
 - iv. hydraulic
 - v. self-servo action
 - vi. adjustment
- b. The construction and operation of disc brakes:
 - i. disc pads
 - ii. calliper
 - iii. brake disc

- iv. ventilated disc
- disc pad retraction ٧.
- c. The construction and operation of the hydraulic braking system:
 - i. master cylinders
 - ii. disc brake calliper & pistons
 - iii. brake pipe
 - iv. warning lights
- d. The principles and components of electronic ABS systems, electrical and electronic components.
- e. The requirements and hazards of brake fluid:
 - boiling point i.
 - hygroscopic action ii.
 - iii. manufacturer's change periods
 - iv. fluid classification and rating
 - potential to damage paint surfaces ٧.
- f. Terms associated with mechanical and hydraulic braking systems:
 - i. braking efficiency
 - ii. brake fade
 - iii. ABS
- g. The procedures used for inspecting the serviceability and condition of the braking system
- h. Braking system defects:
 - worn brake shoes or pads i.
 - worn or scored brake drums ii.
 - iii. worn or scored brake discs
 - iv. abnormal brake noises
 - v. brake judder
 - vi. brake adjustments
 - vii. fluid contamination of brake surfaces
 - viii. antilock brake failure
 - ix. fluid leaks
 - x. poor brakin xi. brake bind poor braking efficiency

 - xii. brake grab
 - xiii. brake fade

Wheel and Tyres

- a. The construction of different types of tyre:
 - i. radial
 - tread patterns ii.
 - iii. tyre mixing regulations
 - iv. tyre applications
- b. Tyre markings:
 - tyre and wheel size markings i.
 - speed rating ii.
 - iii. direction of rotation
 - iv. profile
 - iv tread-wear indicators
- c. Wheel construction:
 - light alloy i.
 - ii. wire wheels

- iii. bearing arrangement
- iv. roller ball
- v. taper
- d. The procedures used for inspecting the serviceability and condition of:
 - i. tyres & wheels
 - ii. bearings
- e. The defects associated with tyres and wheels:
 - i. abnormal tyre wear
 - ii. cuts
 - iii. side wall damage
 - iv. wheel vibrations

General

The procedures for dismantling, removal and replacement of motorcycle chassis units, parts and system components

- a. The preparation:
 - i. testing and use of tools and equipment
 - ii. electrical meters and equipment used for dismantling
- b. Appropriate safety precautions:
 - i. PPE
 - ii. vehicle protection when dismantling
 - iii. removing and replacing chassis motorcycle chassis units, parts and system components
- c. The important of logical and systematic processes.
- d. The inspection and testing systems and components.
- e. The preparation of replacement units for re-fitting or replacement of motorcycle chassis units, parts and system components Identify the reasons why replacement components and units must meet the original specifications (OES):
 - i. warranty requirements
 - ii. to maintain performance
 - iii. safety requirements
- f. Refitting procedures.
- g. The inspection and testing of units and systems to ensure compliance with manufacturer's, legal and performance requirements.
- h. The inspection and re-instatement of the vehicle following repair to ensure customer satisfaction:
 - i. cleanliness of motorcycle
 - ii. security of components and fittings
 - iii re-instatement of components and fittings
- i. construction and operation of motorcycle steering and suspension systems
 - a) conventional steering head
 - b) leading link
 - c) swinging arm
 - d) single swing arm
- j. key engineering principles that are related to motorcycle steering and suspension systems a) steering geometry

- b). steering angles
- c) hydraulic damping
- d). stress and strain
- k. key engineering principles that are related to motorcycle steering and suspension systems
 - a) steering geometry
 - b) steering angles
 - c) hydraulic damping
 - d) stress and strain
- I. construction and operation of motorcycle braking systems
 - a) cable
 - b) hydraulic braking
 - c) electronic ABS system
- m. key engineering principles that are related to motorcycle braking systems
 - a) laws of friction
 - b) hydraulics
 - c) properties of fluids
 - d) braking efficiency
- n. construction and operation of motorcycle wheels and tyres
 - a) tyre construction
 - b) tyre markings
 - c) wheel construction
- o. key engineering principles that are related to motorcycle wheel and tyre systems
 - a) friction
 - b) un-sprung weight
 - c) dynamic and static balance

Unit MC05K – Knowledge of Motorcycle Preparation and Inspections

Content:

Assembly, Pre and post work motorcycle inspections

- a. PPE and motorcycle protection relating to:
 - i. motorcycle body panels and frame
 - ii. paint surfaces
 - iii. polished surfaces
 - iv. seats
- b. Assembly, Pre and post work motorcycle inspection procedures:
 - i. aural
 - ii. visual and functional assessments on engine
 - iii. engine systems
 - iv. chassis systems
 - v. wheels and tyres
 - vi. transmission system
 - vii. electrical and electronic systems
 - viii. exterior motorcycle body panels and frame
- c. The methods for carrying out inspections for: damage, corrosion, fluid leaks, wear, security, mounting security and condition to include;
 - i. engines and engine systems
 - ii. chassis systems
 - iii. transmission systems
 - iv. brakes
 - v. steering
 - vi. suspension
 - vii. wheels
 - viii. tyres
 - ix. body panels and frame
 - x. electrical and electronic systems and components
 - xi. motorcycle seating and mirrors
 - xii. motorcycle instrumentation
 - xiii. driver controls
- d. Check conformity to manufacturer's specifications and legal requirements.
- e. Completion of documentation to include:
 - i. inspection records
 - ii. job cards
 - iii. motorcycle records
- f. Make recommendations based on results of motorcycle inspections.

- g. The checks necessary to ensure customer satisfaction for:
 - i. motorcycle body panels
 - ii. paint surfaces
 - iii. polished surfaces
 - iv. chromed surfaces
 - v. seats and mirrors
- h. Prepare and use appropriate inspection equipment and tools.
- i. Inspection procedures following inspection checklists.
- j. various motorcycle preparation activities and inspections to include:
 - i. new motorcycle assembly
 - ii. pre and post work
 - iii. pre-delivery on new and used motorcycles
 - iv. MOT test
 - v. safety
 - vi. post repair

Unit MC07K – Knowledge of Diagnosis and Rectification of Motorcycle Engine Faults

Content:

Single cylinder and multi-cylinder fuel injection systems

- a. The operation and construction of injection systems including:
 - i. types of air flow/mass sensor
 - ii. fuel supply system
 - iii. fuel pump
 - iv. filter
 - v. fuel regulator
 - vi. injectors
 - vii. electronic control unit (ECU)
 - viii. injector pulse width
 - ix. sensors
- b. The operation of each system under various operating conditions including:
 - i. cold starting
 - ii. warm up
 - iii. hot starting
 - iv. acceleration
 - v. deceleration
 - vi. cruising
 - vii. full load
- c. Engine speed limiting and knock sensing.

Engine Management

- a. The function and purpose of engine management systems.
- b. The difference between analogue, digital, programmable and non-programmable systems.
- c. Open loop and closed loop control, types of input and output devices.
- d. The function and operation of digital components and systems.
- e. The operation of engine management systems under various conditions.

Valve Mechanisms

- a. The reasons for variable valve timing and multi-valve arrangements and the effect on performance.
- b. Layout of multi-valve arrangements, components, operation and drive arrangements.
- c. Construction features and operation of variable valve timing engines and electronic control.

Terms Associated with Combustion

- a. Flame travel, pre-ignition and detonation.
- b. Fuel properties:
 - i. octane rating
 - ii. flash point
 - iii. fire point
 - iv. volatility
 - v. composition of petrol fuels
 - vi. hydro-carbon content
- c. Composition of carbon fuels
- d. Combustion process for spark ignition engines:

- i. air fuel ratio
- ii. lambda ratio
- iii. stoichiometric ratio
- e. The by-products of combustion for different engine conditions and fuel mixtures:
 - i. ĆO
 - ii. CO₂
 - iii. O
 - iv. N
 - $v. H_2O$
 - vi. NOx
- f. Describe the legal requirements for exhaust emissions;
 - i. MOT requirements
 - ii. EURO regulations

Assessment, Repair and Restoration of Mechanical Engine Components

a. How engine mechanical components are assessed and measured for wear and serviceability:

- i. cylinder bores
- ii. cylinder heads
- iii. crankshaft journals
- iv. valve faces
- v. valve guides
- vi. valve seats
- vii. camshafts
- b The methods used for the repair and restoration of engine components.

Symptoms and Faults in Engine Mechanical Systems and Components

- a. Symptoms and faults related to:
 - i. worn cylinders
 - ii. cylinder liners
 - iii. pistons
 - iv. piston rings
 - v. crankshaft
 - vi. camshaft
 - vii. bearings
 - viii. cylinder head and gasket
 - ix. valves
 - x. valve seats and valve guides
 - xi. cambelts tensioned and pulleys
 - xii. cam chains tension systems and guides
 - xiii. lubrication system and components
 - xiv. oil pump
 - xv. relief valve
 - xvi. filter
 - xvii.

Diagnosis of Faults in Engine Mechanical Systems and Components

- a. Interpret information for:
 - i. diagnostic tests
 - ii. manufacturer's motorcycle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. legal requirements
- b. The preparation of tools and equipment for use in diagnostic testing and assessment.

- c. Systematic assessment, testing and inspection of engine components and systems including:
 - i. mechanical system & component condition
 - ii. engine balance
 - iii. power balance
 - iv. performance and operation
 - v. wear
 - vi. run out
 - vii. alignment
- d. Use of appropriate tools and equipment including:
 - i. compression gauges
 - ii. leakage testers
 - iii. cylinder balance tester
 - iv. pressure gauges
 - v. micrometers
 - vi. vernier gauges
- e. Evaluate and interpret test results from diagnostic testing.
- f. Compare test result and values with motorcycle manufacturer's specifications and settings.
- g. The procedures for dismantling, components and systems and the use of appropriate
- equipment and procedures.
- h. Assess, examine and measure components including:
 - i. settings
 - ii. values
 - iii. condition
 - iv. wear and performance of components and systems
- i. Probable faults
 - i. malfunctions
 - ii. incorrect settings
 - iii. wear
- j. Rectification or replacement procedures.

Evaluate operation of components and systems following diagnosis and repair to confirm system performance.

Faults and Symptoms in Ignition Systems

- a. Ignition system failure or malfunctions including:
 - i. no spark
 - ii. misfiring
 - iii. backfiring
 - iv. cold or hot starting problems
 - v. poor performance
 - vi. pre-ignition
 - vii. detonation
 - viii. exhaust emission levels
 - ix. fuel consumption
 - x. low power
 - xi. unstable idle speed

Faults and Symptoms in Electronic Petrol Injection Systems

- a. Petrol injection system failures or malfunctions including:
 - i. cold or hot starting problems
 - ii. poor performance
 - iii. exhaust emissions
 - iv. high fuel consumption
 - v. erratic running
 - vi. low power
 - vii. unstable idle speed

Faults and Symptoms in Petrol Carburetion Systems

- i. cold or hot starting problems
- ii. poor performance
- iii. exhaust emissions
- iv. high fuel consumption
- v. erratic running
- vi. low power
- vii. unstable idle speed

Faults and Symptoms in Engine Management Systems

- a. Engine management system failure or malfunctions including:
 - i. misfiring
 - ii. backfiring
 - iii. cold or hot starting problems
 - iv. poor performance
 - v. pre-ignition
 - vi. detonation
 - vii. exhaust emission levels
 - viii. fuel consumption
 - ix. low power
 - x. unstable idle speed

Diagnosis of Faults in Electronic Engine Management Systems

- a. Locate and interpret information for:
 - i. diagnostic tests
 - ii. manufacturer's vehicle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. fault codes
 - vii. legal requirements
- b. The preparation of tools and equipment for use in diagnostic testing and assessment.
- c. Conduct systematic assessment, testing of engine systems including:
 - i. component condition and performance
 - ii. component settings
 - iii. component values
 - iv. electrical and electronic values
 - v. system performance and operation
 - vi. use of appropriate tools and equipment including gauges
 - vii. multi-meter
 - viii. breakout box
 - ix. oscilloscope
 - x. diagnostic tester
 - xi. manufacturer's dedicated equipment
 - xii. exhaust gas analyser
 - xiii. pressure gauges
- d. Evaluate and interpret test results from diagnostic testing.
- e. Compare test result, values and fault codes with motorcycle manufacturer's specifications and settings.
- f. The procedures for dismantling, components and systems using appropriate equipment.
- g. Assess, examine and measure components including:
 - i. settings

- ii. input and output values
- iii. voltages
- iv. current consumption
- v. resistance
- vi. output patterns with oscilloscope
- vii. condition
- viii. wear and performance of components and systems
- h. Identify probable faults and indications of:
 - i. faults
 - ii. malfunctions
 - iii. incorrect settings
 - iv. wear
 - v. values
 - vi. inputs and outputs
 - vii. fault codes
- i. Rectification or replacement procedures.
- j. Evaluation and the operation of components and systems following diagnosis and repair to confirm system performance.
 - i. speed controls
 - ii. control systems
- k. Use of appropriate tools and equipment including:
 - i. pressure gauges
 - ii. multi-meter
 - iii. breakout box
 - iv. oscilloscope
 - v. diagnostic tester
 - vi. manufacturer's dedicated equipment
 - vii. flow meter
- I. Evaluate and interpret test results from diagnostic testing.
- m. Compare test result, values and fault codes with motorcycle manufacturer's specifications and settings
- n. How to dismantle, components and systems using appropriate equipment and procedures
- o. How to assess, examine and measure components including: settings, input and output values, voltages, current consumption, resistance, output patterns with oscilloscope, pressures, condition, wear and performance of components and systems
- p. Identification of probable faults and indications of faults, malfunctions, incorrect settings, wear, values, inputs and outputs, fault codes, pressures and leaks
- q. Rectification or replacement procedures
- r. Evaluation and operation of components and systems following diagnosis and repair to confirm system performance

Construction and operation of motorcycle engine systems to include:-

- a. engine mechanical
- b. lubrication systems
- c. fuel systems
- d. ignition systems
- e. cooling system
- f. air and exhaust systems
- g. engine management

Engineering principles that are related to motorcycle engine systems

- a. volumetric efficiency
- b. flame travel, pre ignition and detonation
- c. fuel properties
- d. composition of carbon fuels

- e. combustion process
- f. legal requirements for exhaust emissions

Symptoms and causes of faults found in motorcycle engine systems to include:

- a. engine mechanical
- b. Iubrication systems
- c. fuel systems
- d. ignition systems
- e. cooling system
- f. air and exhaust systems
- g. Engine management

Examine, measure and make suitable adjustments to the components including:

- a. settings
- b. input and output values
- c. voltages
- d. current consumption
- e. resistance
- f. output patterns with oscilloscope
- g. pressures
- h. condition
- i. wear and performance

Unit MC08K – Knowledge in Diagnosis and Rectification of Motorcycle Chassis Faults

Content:

Electrical and electronic principles of motorcycle chassis systems

- a. The operation of electrical and electronic systems and components related to motorcycle chassis systems including:
 - i. EĆU
 - ii. sensors and actuators
 - iii. electrical inputs
 - iv. voltages
 - v. oscilloscope patterns
 - vi. digital principles
- b. The interaction between the electrical/electronic system and mechanical components of chassis systems.
- c. Electronic and electrical safety procedures.

Operation of electronic ABS and traction control systems

- a. Layout of:
 - i. ABS and traction control systems
 - ii. warning systems
- b. Operation of:
 - i. hydraulic and electronic control units
 - ii. wheel speed sensor
 - iii. hoses
 - iv. cables and connectors
- c. The relationship and interaction of braking with other motorcycle systems traction control.

Steering geometry for motorcycle applications

a. Front/rear wheel geometry:

Symptoms and faults in braking systems

- a. Symptoms and faults associated with braking systems:
 - i. mechanical
 - ii. hydraulic
 - iii. electrical and electronic systems
 - iv. fluid leaks
 - v. warning light operation
 - vi. poor brake efficiency
 - vii. wheel locking under braking

Diagnosis and faults in braking systems

- a. Locate and interpret information for:
 - i. diagnostic tests
 - ii. motorcycle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. fault codes

- vii. legal requirements
- b. Prepare equipment for use in diagnostic testing.
- c. Conduct systematic testing and inspection of:
 - i. braking system
 - ii. ABS
 - iii. traction control
 - iv. mechanical
 - v. hydraulic
 - vi. electrical and electronic systems
- d. Using appropriate tools and equipment including:
 - i. multi-meters
 - ii. oscilloscope
 - iii. pressure gauges
- e. Evaluate and interpret test results from diagnostic testing.
- f. Compare test result and values with motorcycle manufacturer's specifications and settings.
- g. How to dismantle, components and systems using appropriate equipment and procedures.
- h. Assess, examine and evaluate the operation, settings, values, condition and performance of components and systems.
- i. Probable faults, malfunctions, incorrect settings.
- j. Rectification or replacement procedures.
- k. Operation of systems following diagnosis and repair to confirm operation and performance.

Symptoms and faults associated with steering systems

- a. Symptoms and faults associated with steering systems:
 - i. mechanical
 - ii. steering joints and bushes
 - iii. bearings

Diagnosis and faults in steering systems

- a. Locate and interpret information for:
 - i. diagnostic tests
 - ii. motorcycle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. legal requirements
- b. How to prepare equipment for use in diagnostic testing.
- c. Conduct systematic testing and inspection of:
 - i. steering systems
 - ii. mechanical
- d. Using appropriate tools and equipment including:
 - i. wheel alignment equipment
- e. Evaluate and interpret test results from diagnostic testing.
- f. Compare test result and values with motorcycle manufacturer's specifications and settings.
- g. How to dismantle, components and systems using appropriate equipment and procedures.
- h. Assess, examine and evaluate the:
 - i. operation
 - ii. settings
 - iii. values
 - iv. condition and performance of components and systems
- i. Probable faults, malfunctions, and incorrect settings.
- j. Rectification or replacement procedures.
- k. Operation of systems following diagnosis and repair to confirm operation and performance.

Symptoms and faults associated with suspension systems

- a. Symptoms and faults associated with suspension systems:
 - i. mechanical
 - ii. hydraulic
 - iii. ride height
 - iv. wear
 - v. noises under operation
 - vi. fluid leakage
 - vii. excessive travel
 - viii. excessive tyre wear

Diagnosis and faults in suspension systems

- a. Locate and interpret information for:
 - i. diagnostic tests
 - ii. motorcycle and equipment specifications
 - iii. use of equipment
 - iv. testing procedures
 - v. test plans
 - vi. legal requirements
- b. How to prepare equipment for use in diagnostic testing.
- c. How to conduct systematic testing and inspection of:
 - i. suspension systems
 - ii. mechanical
 - iii. hydraulic
- d. Using appropriate tools and equipment including:
 - i. alignment equipment
- s. Evaluate and interpret test results from diagnostic testing.
- t. Compare test result and values with motorcycle manufacturer's specifications and settings.
- u. How to dismantle, components and systems using appropriate equipment and procedures.
- v. Assess, examine and evaluate the operation, settings, values, condition and performance of components and systems.
- w. Probable faults, malfunctions and incorrect settings.
- x. Rectification or replacement procedures.
- k. Operation of systems following diagnosis and repair to confirm operation and performance.

Construction and operation of motorcycle chassis systems to include: -

- a. Steering
- b. Suspension
- c. Anti-lock-braking system(ABS)
- d. traction control
- e. front and rear wheel geometry

Engineering principles that are related to motorcycle chassis systems

- a. inertia force, mass and acceleration
- b. laws of friction
- c. static's
- d. hydraulic machines

Examine, measure and make suitable adjustments to the components including:

- a. settings
- b. input and output values
- c. voltages
- d. current consumption
- e. resistance
- f. output patterns with oscilloscope

- g. h. pressures
- condition wear and performance i.

Unit MC12K – Knowledge of Diagnosis and Rectification of Motorcycle Transmission and Driveline Faults

Content:

Electrical and electronic principles related to motorcycle transmission systems

- a. The operation of electrical and electronic systems and components related to motorcycle transmission systems including:
 - i. Control units
 - ii. sensors and actuators
 - iii. electrical inputs & outputs
 - iv. voltages
 - v. oscilloscope patterns
- b. The interaction between the electrical/electronic system, and mechanical components of the transmission systems.
- c. Electronic and electrical safety procedures.

The operation motorcycle clutches

a. The construction and operation of friction clutches (wet, and dry) including single and multiplate clutch designs.

The operation of motorcycle transmissions and driveline systems

- a. The construction and operation of manual gearboxes:
 - i. gear arrangements
 - ii. shaft and bearing arrangements
 - iii. selector mechanisms
 - iv. linkages
 - v. lubrication
- b. The construction and operation of automatic gearboxes and method for achieving different gear ratios.
- c. Interaction between mechanical, electrical and electronic components
- d. The construction and operation of continuously variable transmissions (CVT) and the benefits of this type of gearbox design.
- e. The construction and operation of final drive systems including:
- f. Chain and sprocket
- g. Belt systems
 - i. conventional crown wheel and pinion
- h. The construction and operation of motorcycle hub arrangements.
- i. The construction and operation of:
 - i. drive shafts and couplings

Symptoms and faults in motorcycle transmissions and drive-line systems

- a. Clutch and coupling faults:
 - i. abnormal noises
 - ii. vibrations
 - iii. fluid leaks
 - iv. slip
 - v. judder
 - vi. grab
 - vii. failure to release
- b. Gearbox faults:

- i. abnormal noises
- ii. vibrations
- iii. loss of drive
- iv. difficulty engaging or disengaging gears
- v. automatic gear box types
- vi. abnormal noises
- vii. vibrations
- viii. loss of drive
- ix. failure to engage gear
- x. failure to disengage gear
- xi. leaks
- xii. failure to operate
- xiii. incorrect shift patterns
- xiv. electrical and electronic faults
- c. Final drive faults:
 - i. abnormal noises
 - ii. vibrations
 - iii. loss of drive
 - iv. oil leaks
 - v. failure to operate
- d. Drive-lines and couplings:
 - i. abnormal noises
 - ii. vibrations
 - iii. loss of drive

Faults in motorcycle transmission systems

- a. Interpret information for diagnostic tests, vehicle and equipment specifications, use of equipment, testing procedures, test plans, fault codes and legal requirements.
- b. How to prepare equipment for use in diagnostic testing.
- c. How to conduct systematic testing and inspection of transmission system, mechanical,
- hydraulic, electrical and electronic systems using appropriate tools and equipment including, mullet-meters,
- d. How to carry out workshop based and road testing of vehicle and transmission system.
- e. Evaluate and interpret test results from diagnostic and/or road testing.
- f. Compare test result and values with vehicle manufacturer's specifications and settings.
- g. How to dismantle, components and systems using appropriate equipment and procedures.
- h. Assess, examine and evaluate the operation, settings, values, condition and performance of components and systems.
- i. Probable faults, malfunctions and incorrect settings.
- j. Rectification or replacement procedures.
- k. Operation of systems following diagnosis and repair to confirm operation and performance.

Construction and operation of motorcycle transmission and driveline systems to include:-

- a) clutches
- b) manual gearboxes
- c) automatics
- d) electronic control
- e) CVT (continuously variable transmission)
- f) Chain and sprocket
- g) Belt and pulley
- h) Drive shaft
- i) final drive unit
- j) hubs

Advanced engineering principles that are related to motorcycle transmission and driveline systems

- a) friction
- b) torque transmission
- c) material
- d) potential & kinetic energy

Symptoms and causes of faults found in motorcycle transmission and driveline systems to include: -

a) clutches

- b) manual gearboxes
- c) automatics
- d) electronic control
- e) CVT (continuously variable transmission)
- f) Chain and sprocket
- g) Drive shaft
- h) final drive unit
- i) hubs

Examine, measure and make suitable adjustments components including: -

- a) settings
- b) input and output values
- c) voltages
- d) current consumption
- e) resistance
- f) output patterns with oscilloscope
- g) pressures
- h) condition
- i) wear and performance

Unit AE06MCK – Knowledge of Diagnosis and Rectification of Automotive Auxiliary Electrical Faults

Content:

The electrical principles that are related to motorcycle electrical circuits:

- a. Ohms law
- b. Voltage
- c. Power
- d. Current (AC and DC)
- e. Resistance
- f. Magnetism
- g. Electromagnetism and electromagnetic induction
- h. Digital and fibre optic principles
- i. Electrical units and symbols
- j. Electrical and electronic terminology
- k. Relevant electrical safety

Charging

The operation of the motorcycle charging system:

- i. alternator
- ii. rotor
- iii. stator
- iv. slip ring
- v. brush assembly
- vi. three phase output
- vii. diode rectification pack
- viii. voltage regulation
- ix. phased winding connections
- x. cooling fan
- xi alternator drive

Starting

- a. The layout, construction and operation of engine starting systems:
- b. The function and operation of the following components:
 - i. starter motor
 - ii. starter clutch mechanism
 - iii. pinion
 - iv. starter solenoid
 - v. clutch and gear safety switch
 - vi. ignition/starter switch
 - vii. stand switches
 - viii. starter relay (if appropriate)

Common faults and testing methods associated with charging and starting systems

- i. fault code identification
- ii. wiring faults
- iii. component failure
- iv. earth problems
- v. sensor faults.

THE INSTITUTE OF THE MOTOR INDUSTRY

Lighting systems and technology

- a. Lighting systems should include:
 - Xenon lighting i.
 - ii. gas discharge lighting
 - iii. ballast system
 - iv. LED
 - v. intelligent front lighting
 - vi. blue lights
 - vii. complex reflectors
 - viii. fibre optic
 - ix. optical patterning

Lighting circuits and the relationship between each circuit

- a. Circuits must include:
 - sidelights i.
 - ii. dipped beam
 - iii. main beam
 - iv. dim/dip

Common faults and testing methods associated with external lighting system

- a. Fault diagnosis for:
 - i. lighting systems failing to operate correctly
 - ii. switches
 - iii. relays
 - iv. bulbs failing to operate

The operating principles of external lighting systems and multiplexing systems

a. To include all external lighting systems and a good knowledge of multiplexing systems.

The different types of auxiliary electrical components

- a. Components should include:
 - i. heated grip
 - ii. electrically operated screens
 - iii. horn
 - iv. multi-functional switches
 - v. relays vi. heated mirrors

Common faults and testing methods associated with heated mirror systems

- a. Faults must include:
 - i. screen elements not operating
 - ii. timer relays not operating and staying on permanently

The different types of entertainment and information systems and components

- a. Systems and components must include:
 - radio CD and multi play units i.
 - MP3 players ii.
 - iii. speakers
 - iv. aerial systems
 - amplifiers v.
 - vi. Satellite Navigation
 - vii. communication units

Common faults and testing methods associated with entertainment and information systems

a. Faults to include:

- i. entertainment and navigation units not operating
- ii. speaker, aerial and amplifier systems not functioning correctly
- iii. excessive radio interference (suppression)
- iv. use of diagnostic computers and systems

The different types of integrated security/warning systems and components

- a. Components to include:
 - i. control units
 - ii. alarm modules
 - iii. audible warning units
 - iv. immobiliser units
 - v. sensing units
 - vi. horn
 - vii. audible warning speakers

The function of component parts in integrated security and warning systems

- a. Components to include
 - i. control units
 - ii. alarm modules
 - iii. audible warning units
 - iv. immobiliser units
 - v. relays
 - vi. diodes
 - vii. horns

The relevant legislation relevant to security and warning systems

a. Find and apply all relevant legislation for the fitment and use of security and warning systems.

Common faults and testing methods associated with security and warning systems

- a. Components to include:
 - i. control units
 - ii. audible warning units
 - iii. immobiliser units
 - iv. horns
 - v. relays
 - vi. diodes
 - vii. wiring
 - viii. connections and protection devices
 - ix. removal and refitting procedures
 - x. using computer diagnostics to identify faults
 - xi. use of manufacturers diagnostic equipment

How to examine, measure and make suitable adjustments to components are:

- a. Settings
- b. Input and output values
- c. Voltages
- d. Current consumption
- e. Resistance

- f. Input and output patterns with oscilloscope (including frequency and duty cycle measurements)
- g. Condition
- h. Wear and performance

How to select, prepare and use diagnostic and rectification equipment for motorcycle auxiliary electrical systems:

- a. Voltmeters
- b. Ammeters
- c. Ohmmeters
- d. Multi-meters
- e. Battery testing equipmentf. Dedicated and computer based diagnostic equipment
- g. Oscilloscopes